Loading…

Online-Learning-Based Complexity Reduction Scheme for 3D-HEVC

3-D High Efficiency Video Coding (HEVC) is a new emerging video compression standard for multiview video applications. This standard utilizes advanced interview prediction characteristics in addition to the prediction features of the HEVC standard for efficient encoding of multiview video content. W...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2016-10, Vol.26 (10), p.1870-1883
Main Authors: Tohidypour, Hamid Reza, Pourazad, Mahsa T., Nasiopoulos, Panos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223
cites cdi_FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223
container_end_page 1883
container_issue 10
container_start_page 1870
container_title IEEE transactions on circuits and systems for video technology
container_volume 26
creator Tohidypour, Hamid Reza
Pourazad, Mahsa T.
Nasiopoulos, Panos
description 3-D High Efficiency Video Coding (HEVC) is a new emerging video compression standard for multiview video applications. This standard utilizes advanced interview prediction characteristics in addition to the prediction features of the HEVC standard for efficient encoding of multiview video content. While using combined features improves the compression performance by utilizing the correlation between the views captured from slightly different angles of the same scene, they also increase coding complexity. The focus of this paper is on developing an efficient complexity reduction scheme for 3D-HEVC, with the intention to facilitate the adoption of this upcoming standard, especially for real-time applications. In this regard, first, we introduce two ways to decrease the complexity of the inter-/ intra-mode search process of the to-be-encoded blocks in the dependent texture views ({\mathrm {DV}}_{t}\text{s} ) of 3D-HEVC. Then, we propose a hybrid complexity reduction scheme that utilizes the two-mode prediction approaches, motion information of the base texture view (BVt), and the rate distortion cost of the already encoded blocks in the BVt and DVt. The performance of our proposed scheme is tested for the case with two views (i.e., base view + dependent view). The evaluations confirm that our proposed hybrid complexity reduction scheme reduces the 3D-HEVC codec complexity by 67.70% on average for the DVt compared with the unmodified 3D-HEVC encoder, while maintaining the overall video quality. Compared with the state-of-the-art method, it reduces complexity by 25.74% on average.
doi_str_mv 10.1109/TCSVT.2015.2477955
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2015_2477955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7258347</ieee_id><sourcerecordid>4223961891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQQBdRsFb_gF4Cnrfu7Ed2c_CgsVqhULC11yXZTDSlTepuAvbfm9ri0dPM4b0ZeIRcAxsBsORukc6XixFnoEZcap0odUIGoJShnDN12u9MATUc1Dm5CGHFGEgj9YDcz-p1VSOdYubrqv6gj1nAIkqbzXaN31W7i96w6FxbNXU0d5-4wahsfCSe6GS8TC_JWZmtA14d55C8P48X6YROZy-v6cOUOsFFS1WWoJO5cLGMQUmmFdMy0RqMQ2ZKVcY5moLngK50WKAokCeYJ4CxBs25GJLbw92tb746DK1dNZ2v-5eWg5aCMxn_S4ERwFgSx7Kn-IFyvgnBY2m3vtpkfmeB2X1M-xvT7mPaY8xeujlIFSL-CZorI6QWP6qSbeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831009664</pqid></control><display><type>article</type><title>Online-Learning-Based Complexity Reduction Scheme for 3D-HEVC</title><source>IEEE Xplore (Online service)</source><creator>Tohidypour, Hamid Reza ; Pourazad, Mahsa T. ; Nasiopoulos, Panos</creator><creatorcontrib>Tohidypour, Hamid Reza ; Pourazad, Mahsa T. ; Nasiopoulos, Panos</creatorcontrib><description>3-D High Efficiency Video Coding (HEVC) is a new emerging video compression standard for multiview video applications. This standard utilizes advanced interview prediction characteristics in addition to the prediction features of the HEVC standard for efficient encoding of multiview video content. While using combined features improves the compression performance by utilizing the correlation between the views captured from slightly different angles of the same scene, they also increase coding complexity. The focus of this paper is on developing an efficient complexity reduction scheme for 3D-HEVC, with the intention to facilitate the adoption of this upcoming standard, especially for real-time applications. In this regard, first, we introduce two ways to decrease the complexity of the inter-/ intra-mode search process of the to-be-encoded blocks in the dependent texture views ({\mathrm {DV}}_{t}\text{s} ) of 3D-HEVC. Then, we propose a hybrid complexity reduction scheme that utilizes the two-mode prediction approaches, motion information of the base texture view (BVt), and the rate distortion cost of the already encoded blocks in the BVt and DVt. The performance of our proposed scheme is tested for the case with two views (i.e., base view + dependent view). The evaluations confirm that our proposed hybrid complexity reduction scheme reduces the 3D-HEVC codec complexity by 67.70% on average for the DVt compared with the unmodified 3D-HEVC encoder, while maintaining the overall video quality. Compared with the state-of-the-art method, it reduces complexity by 25.74% on average.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2015.2477955</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D High Efficiency Video Coding (HEVC) ; Bayesian classifier ; Codec ; Coding ; Complexity ; Complexity theory ; Correlation ; Defects ; Distance learning ; Encoding ; low-complexity compression ; online learning ; Predictive models ; Probabilistic logic ; Reduction ; Search process ; State of the art ; Texture ; Video coding ; Video compression</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2016-10, Vol.26 (10), p.1870-1883</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223</citedby><cites>FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7258347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tohidypour, Hamid Reza</creatorcontrib><creatorcontrib>Pourazad, Mahsa T.</creatorcontrib><creatorcontrib>Nasiopoulos, Panos</creatorcontrib><title>Online-Learning-Based Complexity Reduction Scheme for 3D-HEVC</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>3-D High Efficiency Video Coding (HEVC) is a new emerging video compression standard for multiview video applications. This standard utilizes advanced interview prediction characteristics in addition to the prediction features of the HEVC standard for efficient encoding of multiview video content. While using combined features improves the compression performance by utilizing the correlation between the views captured from slightly different angles of the same scene, they also increase coding complexity. The focus of this paper is on developing an efficient complexity reduction scheme for 3D-HEVC, with the intention to facilitate the adoption of this upcoming standard, especially for real-time applications. In this regard, first, we introduce two ways to decrease the complexity of the inter-/ intra-mode search process of the to-be-encoded blocks in the dependent texture views ({\mathrm {DV}}_{t}\text{s} ) of 3D-HEVC. Then, we propose a hybrid complexity reduction scheme that utilizes the two-mode prediction approaches, motion information of the base texture view (BVt), and the rate distortion cost of the already encoded blocks in the BVt and DVt. The performance of our proposed scheme is tested for the case with two views (i.e., base view + dependent view). The evaluations confirm that our proposed hybrid complexity reduction scheme reduces the 3D-HEVC codec complexity by 67.70% on average for the DVt compared with the unmodified 3D-HEVC encoder, while maintaining the overall video quality. Compared with the state-of-the-art method, it reduces complexity by 25.74% on average.</description><subject>3-D High Efficiency Video Coding (HEVC)</subject><subject>Bayesian classifier</subject><subject>Codec</subject><subject>Coding</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Correlation</subject><subject>Defects</subject><subject>Distance learning</subject><subject>Encoding</subject><subject>low-complexity compression</subject><subject>online learning</subject><subject>Predictive models</subject><subject>Probabilistic logic</subject><subject>Reduction</subject><subject>Search process</subject><subject>State of the art</subject><subject>Texture</subject><subject>Video coding</subject><subject>Video compression</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQQBdRsFb_gF4Cnrfu7Ed2c_CgsVqhULC11yXZTDSlTepuAvbfm9ri0dPM4b0ZeIRcAxsBsORukc6XixFnoEZcap0odUIGoJShnDN12u9MATUc1Dm5CGHFGEgj9YDcz-p1VSOdYubrqv6gj1nAIkqbzXaN31W7i96w6FxbNXU0d5-4wahsfCSe6GS8TC_JWZmtA14d55C8P48X6YROZy-v6cOUOsFFS1WWoJO5cLGMQUmmFdMy0RqMQ2ZKVcY5moLngK50WKAokCeYJ4CxBs25GJLbw92tb746DK1dNZ2v-5eWg5aCMxn_S4ERwFgSx7Kn-IFyvgnBY2m3vtpkfmeB2X1M-xvT7mPaY8xeujlIFSL-CZorI6QWP6qSbeI</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Tohidypour, Hamid Reza</creator><creator>Pourazad, Mahsa T.</creator><creator>Nasiopoulos, Panos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Online-Learning-Based Complexity Reduction Scheme for 3D-HEVC</title><author>Tohidypour, Hamid Reza ; Pourazad, Mahsa T. ; Nasiopoulos, Panos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3-D High Efficiency Video Coding (HEVC)</topic><topic>Bayesian classifier</topic><topic>Codec</topic><topic>Coding</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Correlation</topic><topic>Defects</topic><topic>Distance learning</topic><topic>Encoding</topic><topic>low-complexity compression</topic><topic>online learning</topic><topic>Predictive models</topic><topic>Probabilistic logic</topic><topic>Reduction</topic><topic>Search process</topic><topic>State of the art</topic><topic>Texture</topic><topic>Video coding</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tohidypour, Hamid Reza</creatorcontrib><creatorcontrib>Pourazad, Mahsa T.</creatorcontrib><creatorcontrib>Nasiopoulos, Panos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tohidypour, Hamid Reza</au><au>Pourazad, Mahsa T.</au><au>Nasiopoulos, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online-Learning-Based Complexity Reduction Scheme for 3D-HEVC</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2016-10</date><risdate>2016</risdate><volume>26</volume><issue>10</issue><spage>1870</spage><epage>1883</epage><pages>1870-1883</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>3-D High Efficiency Video Coding (HEVC) is a new emerging video compression standard for multiview video applications. This standard utilizes advanced interview prediction characteristics in addition to the prediction features of the HEVC standard for efficient encoding of multiview video content. While using combined features improves the compression performance by utilizing the correlation between the views captured from slightly different angles of the same scene, they also increase coding complexity. The focus of this paper is on developing an efficient complexity reduction scheme for 3D-HEVC, with the intention to facilitate the adoption of this upcoming standard, especially for real-time applications. In this regard, first, we introduce two ways to decrease the complexity of the inter-/ intra-mode search process of the to-be-encoded blocks in the dependent texture views ({\mathrm {DV}}_{t}\text{s} ) of 3D-HEVC. Then, we propose a hybrid complexity reduction scheme that utilizes the two-mode prediction approaches, motion information of the base texture view (BVt), and the rate distortion cost of the already encoded blocks in the BVt and DVt. The performance of our proposed scheme is tested for the case with two views (i.e., base view + dependent view). The evaluations confirm that our proposed hybrid complexity reduction scheme reduces the 3D-HEVC codec complexity by 67.70% on average for the DVt compared with the unmodified 3D-HEVC encoder, while maintaining the overall video quality. Compared with the state-of-the-art method, it reduces complexity by 25.74% on average.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2015.2477955</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2016-10, Vol.26 (10), p.1870-1883
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2015_2477955
source IEEE Xplore (Online service)
subjects 3-D High Efficiency Video Coding (HEVC)
Bayesian classifier
Codec
Coding
Complexity
Complexity theory
Correlation
Defects
Distance learning
Encoding
low-complexity compression
online learning
Predictive models
Probabilistic logic
Reduction
Search process
State of the art
Texture
Video coding
Video compression
title Online-Learning-Based Complexity Reduction Scheme for 3D-HEVC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online-Learning-Based%20Complexity%20Reduction%20Scheme%20for%203D-HEVC&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Tohidypour,%20Hamid%20Reza&rft.date=2016-10&rft.volume=26&rft.issue=10&rft.spage=1870&rft.epage=1883&rft.pages=1870-1883&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2015.2477955&rft_dat=%3Cproquest_cross%3E4223961891%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-5a9ec4b3c64615407507497718ce08f5f6be8d2b1ecfcede3de29eb91e6717223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1831009664&rft_id=info:pmid/&rft_ieee_id=7258347&rfr_iscdi=true