Loading…
A Simple Algorithm of Superpixel Segmentation With Boundary Constraint
As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to bala...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2017-07, Vol.27 (7), p.1502-1514 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923 |
container_end_page | 1514 |
container_issue | 7 |
container_start_page | 1502 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 27 |
creator | Zhang, Yongxia Li, Xuemei Gao, Xifeng Zhang, Caiming |
description | As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries. |
doi_str_mv | 10.1109/TCSVT.2016.2539839 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2016_2539839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428902</ieee_id><sourcerecordid>1916521136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwArBYYk7x2bFrjyWigFSJIQVGK3EuJVUSByeR4O1JKWK6G_7vv9NHyDWwBQAzd9skfdsuOAO14FIYLcwJmYGUOuKcydNpZxIizUGek4u-3zMGsY6XM7Je0bRquhrpqt75UA0fDfUlTccOQ1d9YU1T3DXYDtlQ-Za-TwF678e2yMI3TXzbDyGr2uGSnJVZ3ePV35yT1_XDNnmKNi-Pz8lqEzkhzBCZTCupC2fQockZyKXiTpQ808iUkzo3TORC6dxlyjDIC5krw51jssC4MFzMye2xtwv-c8R-sHs_hnY6acGAkhxAqCnFjykXfN8HLG0Xqmb62AKzB1_215c9-LJ_vibo5ghViPgPLGOuDePiB3I1Zts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916521136</pqid></control><display><type>article</type><title>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Yongxia ; Li, Xuemei ; Gao, Xifeng ; Zhang, Caiming</creator><creatorcontrib>Zhang, Yongxia ; Li, Xuemei ; Gao, Xifeng ; Zhang, Caiming</creatorcontrib><description>As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2539839</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adhesion ; Algorithm design and analysis ; Clustering algorithms ; Complexity theory ; Computer vision ; Distance measurement ; Image edge detection ; Image preprocessing ; Image segmentation ; oversegmentation ; Seeds ; Shape ; superpixel</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2017-07, Vol.27 (7), p.1502-1514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</citedby><cites>FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428902$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Yongxia</creatorcontrib><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Gao, Xifeng</creatorcontrib><creatorcontrib>Zhang, Caiming</creatorcontrib><title>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.</description><subject>Adhesion</subject><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Distance measurement</subject><subject>Image edge detection</subject><subject>Image preprocessing</subject><subject>Image segmentation</subject><subject>oversegmentation</subject><subject>Seeds</subject><subject>Shape</subject><subject>superpixel</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kLFOwzAQhi0EEqXwArBYYk7x2bFrjyWigFSJIQVGK3EuJVUSByeR4O1JKWK6G_7vv9NHyDWwBQAzd9skfdsuOAO14FIYLcwJmYGUOuKcydNpZxIizUGek4u-3zMGsY6XM7Je0bRquhrpqt75UA0fDfUlTccOQ1d9YU1T3DXYDtlQ-Za-TwF678e2yMI3TXzbDyGr2uGSnJVZ3ePV35yT1_XDNnmKNi-Pz8lqEzkhzBCZTCupC2fQockZyKXiTpQ808iUkzo3TORC6dxlyjDIC5krw51jssC4MFzMye2xtwv-c8R-sHs_hnY6acGAkhxAqCnFjykXfN8HLG0Xqmb62AKzB1_215c9-LJ_vibo5ghViPgPLGOuDePiB3I1Zts</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zhang, Yongxia</creator><creator>Li, Xuemei</creator><creator>Gao, Xifeng</creator><creator>Zhang, Caiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</title><author>Zhang, Yongxia ; Li, Xuemei ; Gao, Xifeng ; Zhang, Caiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Distance measurement</topic><topic>Image edge detection</topic><topic>Image preprocessing</topic><topic>Image segmentation</topic><topic>oversegmentation</topic><topic>Seeds</topic><topic>Shape</topic><topic>superpixel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yongxia</creatorcontrib><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Gao, Xifeng</creatorcontrib><creatorcontrib>Zhang, Caiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yongxia</au><au>Li, Xuemei</au><au>Gao, Xifeng</au><au>Zhang, Caiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>27</volume><issue>7</issue><spage>1502</spage><epage>1514</epage><pages>1502-1514</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2539839</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2017-07, Vol.27 (7), p.1502-1514 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2016_2539839 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adhesion Algorithm design and analysis Clustering algorithms Complexity theory Computer vision Distance measurement Image edge detection Image preprocessing Image segmentation oversegmentation Seeds Shape superpixel |
title | A Simple Algorithm of Superpixel Segmentation With Boundary Constraint |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Algorithm%20of%20Superpixel%20Segmentation%20With%20Boundary%20Constraint&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Yongxia&rft.date=2017-07-01&rft.volume=27&rft.issue=7&rft.spage=1502&rft.epage=1514&rft.pages=1502-1514&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2539839&rft_dat=%3Cproquest_cross%3E1916521136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916521136&rft_id=info:pmid/&rft_ieee_id=7428902&rfr_iscdi=true |