Loading…

A Simple Algorithm of Superpixel Segmentation With Boundary Constraint

As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to bala...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2017-07, Vol.27 (7), p.1502-1514
Main Authors: Zhang, Yongxia, Li, Xuemei, Gao, Xifeng, Zhang, Caiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923
cites cdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923
container_end_page 1514
container_issue 7
container_start_page 1502
container_title IEEE transactions on circuits and systems for video technology
container_volume 27
creator Zhang, Yongxia
Li, Xuemei
Gao, Xifeng
Zhang, Caiming
description As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.
doi_str_mv 10.1109/TCSVT.2016.2539839
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2016_2539839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428902</ieee_id><sourcerecordid>1916521136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwArBYYk7x2bFrjyWigFSJIQVGK3EuJVUSByeR4O1JKWK6G_7vv9NHyDWwBQAzd9skfdsuOAO14FIYLcwJmYGUOuKcydNpZxIizUGek4u-3zMGsY6XM7Je0bRquhrpqt75UA0fDfUlTccOQ1d9YU1T3DXYDtlQ-Za-TwF678e2yMI3TXzbDyGr2uGSnJVZ3ePV35yT1_XDNnmKNi-Pz8lqEzkhzBCZTCupC2fQockZyKXiTpQ808iUkzo3TORC6dxlyjDIC5krw51jssC4MFzMye2xtwv-c8R-sHs_hnY6acGAkhxAqCnFjykXfN8HLG0Xqmb62AKzB1_215c9-LJ_vibo5ghViPgPLGOuDePiB3I1Zts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916521136</pqid></control><display><type>article</type><title>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Yongxia ; Li, Xuemei ; Gao, Xifeng ; Zhang, Caiming</creator><creatorcontrib>Zhang, Yongxia ; Li, Xuemei ; Gao, Xifeng ; Zhang, Caiming</creatorcontrib><description>As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2016.2539839</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adhesion ; Algorithm design and analysis ; Clustering algorithms ; Complexity theory ; Computer vision ; Distance measurement ; Image edge detection ; Image preprocessing ; Image segmentation ; oversegmentation ; Seeds ; Shape ; superpixel</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2017-07, Vol.27 (7), p.1502-1514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</citedby><cites>FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428902$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Yongxia</creatorcontrib><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Gao, Xifeng</creatorcontrib><creatorcontrib>Zhang, Caiming</creatorcontrib><title>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.</description><subject>Adhesion</subject><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Distance measurement</subject><subject>Image edge detection</subject><subject>Image preprocessing</subject><subject>Image segmentation</subject><subject>oversegmentation</subject><subject>Seeds</subject><subject>Shape</subject><subject>superpixel</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kLFOwzAQhi0EEqXwArBYYk7x2bFrjyWigFSJIQVGK3EuJVUSByeR4O1JKWK6G_7vv9NHyDWwBQAzd9skfdsuOAO14FIYLcwJmYGUOuKcydNpZxIizUGek4u-3zMGsY6XM7Je0bRquhrpqt75UA0fDfUlTccOQ1d9YU1T3DXYDtlQ-Za-TwF678e2yMI3TXzbDyGr2uGSnJVZ3ePV35yT1_XDNnmKNi-Pz8lqEzkhzBCZTCupC2fQockZyKXiTpQ808iUkzo3TORC6dxlyjDIC5krw51jssC4MFzMye2xtwv-c8R-sHs_hnY6acGAkhxAqCnFjykXfN8HLG0Xqmb62AKzB1_215c9-LJ_vibo5ghViPgPLGOuDePiB3I1Zts</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zhang, Yongxia</creator><creator>Li, Xuemei</creator><creator>Gao, Xifeng</creator><creator>Zhang, Caiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</title><author>Zhang, Yongxia ; Li, Xuemei ; Gao, Xifeng ; Zhang, Caiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Distance measurement</topic><topic>Image edge detection</topic><topic>Image preprocessing</topic><topic>Image segmentation</topic><topic>oversegmentation</topic><topic>Seeds</topic><topic>Shape</topic><topic>superpixel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yongxia</creatorcontrib><creatorcontrib>Li, Xuemei</creatorcontrib><creatorcontrib>Gao, Xifeng</creatorcontrib><creatorcontrib>Zhang, Caiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yongxia</au><au>Li, Xuemei</au><au>Gao, Xifeng</au><au>Zhang, Caiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Algorithm of Superpixel Segmentation With Boundary Constraint</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>27</volume><issue>7</issue><spage>1502</spage><epage>1514</epage><pages>1502-1514</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>As one of the most popular image oversegmentations, superpixel has been commonly used as supporting regions for primitives to reduce computations in various computer vision tasks. In this paper, we propose a novel superpixel segmentation approach based on a distance function that is designed to balance among boundary adherence, intensity homogeneity, and compactness (COM) characteristics of the resulting superpixels. Given an expected number of superpixels, our method begins with initializing the superpixel seed positions to obtain the initial labels of pixels. Then, we optimize the superpixels iteratively based on the defined distance measurement. We update the positions and intensities of superpixel seeds based on the three-sigma rule. The experimental results demonstrate that our algorithm is more effective and accurate than previous superpixel methods and achieves a comparable tradeoff between superpixel COM and adherence to object boundaries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2016.2539839</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2017-07, Vol.27 (7), p.1502-1514
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2016_2539839
source IEEE Electronic Library (IEL) Journals
subjects Adhesion
Algorithm design and analysis
Clustering algorithms
Complexity theory
Computer vision
Distance measurement
Image edge detection
Image preprocessing
Image segmentation
oversegmentation
Seeds
Shape
superpixel
title A Simple Algorithm of Superpixel Segmentation With Boundary Constraint
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Algorithm%20of%20Superpixel%20Segmentation%20With%20Boundary%20Constraint&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Yongxia&rft.date=2017-07-01&rft.volume=27&rft.issue=7&rft.spage=1502&rft.epage=1514&rft.pages=1502-1514&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2016.2539839&rft_dat=%3Cproquest_cross%3E1916521136%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-9a8658dc9ece9b015762c3f2a8e06c58b903b368bca6901bd5b692cc05de4d923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916521136&rft_id=info:pmid/&rft_ieee_id=7428902&rfr_iscdi=true