Loading…

Microshift: An Efficient Image Compression Algorithm for Hardware

In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2019-11, Vol.29 (11), p.3430-3443
Main Authors: Zhang, Bo, Sander, Pedro V., Tsui, Chi-Ying, Bermak, Amine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793
cites cdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793
container_end_page 3443
container_issue 11
container_start_page 3430
container_title IEEE transactions on circuits and systems for video technology
container_volume 29
creator Zhang, Bo
Sander, Pedro V.
Tsui, Chi-Ying
Bermak, Amine
description In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.
doi_str_mv 10.1109/TCSVT.2018.2880227
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2018_2880227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8529272</ieee_id><sourcerecordid>2311107071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYi-gF6aeF5sZ1vaettsQEgwHkSvzbI7hRJ2F9slxrd3EeJp5vB__2Q-Qu45G3HOzNMyf_9cjoBxPQKtGYC6IAMupU4AmLzsdyZ5ooHLa3IT45YxLrRQA5K9-jK0ceNd90yzhk6c86XHpqPzulgjzdt6HzBG3zY0263b4LtNTV0b6KwI1XcR8JZcuWIX8e48h-RjOlnms2Tx9jLPs0VSgpFdUhjluF4ZsTKGSVEZJVNRlaZyPB1X0lXOgGAM5WrM0KFOJY61KtJSCxCoTDokj6fefWi_Dhg7u20PoelPWkh5b0ExxfsUnFLHr2JAZ_fB10X4sZzZoyr7p8oeVdmzqh56OEEeEf8BLcGAgvQXWX1kBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311107071</pqid></control><display><type>article</type><title>Microshift: An Efficient Image Compression Algorithm for Hardware</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Bo ; Sander, Pedro V. ; Tsui, Chi-Ying ; Bermak, Amine</creator><creatorcontrib>Zhang, Bo ; Sander, Pedro V. ; Tsui, Chi-Ying ; Bermak, Amine</creatorcontrib><description>In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2018.2880227</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Co-design ; Complexity theory ; Compression algorithms ; FPGA implementation ; Hardware ; Image coding ; Image compression ; Image quality ; image sensor ; Microshift ; MRF model ; on-chip image compression ; Power consumption ; Power efficiency ; Quantization (signal) ; Signal to noise ratio ; Uncertainty ; Wireless networks</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2019-11, Vol.29 (11), p.3430-3443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</citedby><cites>FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</cites><orcidid>0000-0002-9795-4673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8529272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Sander, Pedro V.</creatorcontrib><creatorcontrib>Tsui, Chi-Ying</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><title>Microshift: An Efficient Image Compression Algorithm for Hardware</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.</description><subject>Algorithms</subject><subject>Co-design</subject><subject>Complexity theory</subject><subject>Compression algorithms</subject><subject>FPGA implementation</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image quality</subject><subject>image sensor</subject><subject>Microshift</subject><subject>MRF model</subject><subject>on-chip image compression</subject><subject>Power consumption</subject><subject>Power efficiency</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><subject>Uncertainty</subject><subject>Wireless networks</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEQhhujiYi-gF6aeF5sZ1vaettsQEgwHkSvzbI7hRJ2F9slxrd3EeJp5vB__2Q-Qu45G3HOzNMyf_9cjoBxPQKtGYC6IAMupU4AmLzsdyZ5ooHLa3IT45YxLrRQA5K9-jK0ceNd90yzhk6c86XHpqPzulgjzdt6HzBG3zY0263b4LtNTV0b6KwI1XcR8JZcuWIX8e48h-RjOlnms2Tx9jLPs0VSgpFdUhjluF4ZsTKGSVEZJVNRlaZyPB1X0lXOgGAM5WrM0KFOJY61KtJSCxCoTDokj6fefWi_Dhg7u20PoelPWkh5b0ExxfsUnFLHr2JAZ_fB10X4sZzZoyr7p8oeVdmzqh56OEEeEf8BLcGAgvQXWX1kBA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Bo</creator><creator>Sander, Pedro V.</creator><creator>Tsui, Chi-Ying</creator><creator>Bermak, Amine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9795-4673</orcidid></search><sort><creationdate>20191101</creationdate><title>Microshift: An Efficient Image Compression Algorithm for Hardware</title><author>Zhang, Bo ; Sander, Pedro V. ; Tsui, Chi-Ying ; Bermak, Amine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Co-design</topic><topic>Complexity theory</topic><topic>Compression algorithms</topic><topic>FPGA implementation</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image quality</topic><topic>image sensor</topic><topic>Microshift</topic><topic>MRF model</topic><topic>on-chip image compression</topic><topic>Power consumption</topic><topic>Power efficiency</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><topic>Uncertainty</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Sander, Pedro V.</creatorcontrib><creatorcontrib>Tsui, Chi-Ying</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo</au><au>Sander, Pedro V.</au><au>Tsui, Chi-Ying</au><au>Bermak, Amine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microshift: An Efficient Image Compression Algorithm for Hardware</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>3430</spage><epage>3443</epage><pages>3430-3443</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2018.2880227</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9795-4673</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2019-11, Vol.29 (11), p.3430-3443
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2018_2880227
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Co-design
Complexity theory
Compression algorithms
FPGA implementation
Hardware
Image coding
Image compression
Image quality
image sensor
Microshift
MRF model
on-chip image compression
Power consumption
Power efficiency
Quantization (signal)
Signal to noise ratio
Uncertainty
Wireless networks
title Microshift: An Efficient Image Compression Algorithm for Hardware
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microshift:%20An%20Efficient%20Image%20Compression%20Algorithm%20for%20Hardware&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Bo&rft.date=2019-11-01&rft.volume=29&rft.issue=11&rft.spage=3430&rft.epage=3443&rft.pages=3430-3443&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2018.2880227&rft_dat=%3Cproquest_cross%3E2311107071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311107071&rft_id=info:pmid/&rft_ieee_id=8529272&rfr_iscdi=true