Loading…
Microshift: An Efficient Image Compression Algorithm for Hardware
In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2019-11, Vol.29 (11), p.3430-3443 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793 |
container_end_page | 3443 |
container_issue | 11 |
container_start_page | 3430 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 29 |
creator | Zhang, Bo Sander, Pedro V. Tsui, Chi-Ying Bermak, Amine |
description | In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks. |
doi_str_mv | 10.1109/TCSVT.2018.2880227 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2018_2880227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8529272</ieee_id><sourcerecordid>2311107071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYi-gF6aeF5sZ1vaettsQEgwHkSvzbI7hRJ2F9slxrd3EeJp5vB__2Q-Qu45G3HOzNMyf_9cjoBxPQKtGYC6IAMupU4AmLzsdyZ5ooHLa3IT45YxLrRQA5K9-jK0ceNd90yzhk6c86XHpqPzulgjzdt6HzBG3zY0263b4LtNTV0b6KwI1XcR8JZcuWIX8e48h-RjOlnms2Tx9jLPs0VSgpFdUhjluF4ZsTKGSVEZJVNRlaZyPB1X0lXOgGAM5WrM0KFOJY61KtJSCxCoTDokj6fefWi_Dhg7u20PoelPWkh5b0ExxfsUnFLHr2JAZ_fB10X4sZzZoyr7p8oeVdmzqh56OEEeEf8BLcGAgvQXWX1kBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311107071</pqid></control><display><type>article</type><title>Microshift: An Efficient Image Compression Algorithm for Hardware</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Bo ; Sander, Pedro V. ; Tsui, Chi-Ying ; Bermak, Amine</creator><creatorcontrib>Zhang, Bo ; Sander, Pedro V. ; Tsui, Chi-Ying ; Bermak, Amine</creatorcontrib><description>In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2018.2880227</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Co-design ; Complexity theory ; Compression algorithms ; FPGA implementation ; Hardware ; Image coding ; Image compression ; Image quality ; image sensor ; Microshift ; MRF model ; on-chip image compression ; Power consumption ; Power efficiency ; Quantization (signal) ; Signal to noise ratio ; Uncertainty ; Wireless networks</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2019-11, Vol.29 (11), p.3430-3443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</citedby><cites>FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</cites><orcidid>0000-0002-9795-4673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8529272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Sander, Pedro V.</creatorcontrib><creatorcontrib>Tsui, Chi-Ying</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><title>Microshift: An Efficient Image Compression Algorithm for Hardware</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.</description><subject>Algorithms</subject><subject>Co-design</subject><subject>Complexity theory</subject><subject>Compression algorithms</subject><subject>FPGA implementation</subject><subject>Hardware</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image quality</subject><subject>image sensor</subject><subject>Microshift</subject><subject>MRF model</subject><subject>on-chip image compression</subject><subject>Power consumption</subject><subject>Power efficiency</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><subject>Uncertainty</subject><subject>Wireless networks</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEQhhujiYi-gF6aeF5sZ1vaettsQEgwHkSvzbI7hRJ2F9slxrd3EeJp5vB__2Q-Qu45G3HOzNMyf_9cjoBxPQKtGYC6IAMupU4AmLzsdyZ5ooHLa3IT45YxLrRQA5K9-jK0ceNd90yzhk6c86XHpqPzulgjzdt6HzBG3zY0263b4LtNTV0b6KwI1XcR8JZcuWIX8e48h-RjOlnms2Tx9jLPs0VSgpFdUhjluF4ZsTKGSVEZJVNRlaZyPB1X0lXOgGAM5WrM0KFOJY61KtJSCxCoTDokj6fefWi_Dhg7u20PoelPWkh5b0ExxfsUnFLHr2JAZ_fB10X4sZzZoyr7p8oeVdmzqh56OEEeEf8BLcGAgvQXWX1kBA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Bo</creator><creator>Sander, Pedro V.</creator><creator>Tsui, Chi-Ying</creator><creator>Bermak, Amine</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9795-4673</orcidid></search><sort><creationdate>20191101</creationdate><title>Microshift: An Efficient Image Compression Algorithm for Hardware</title><author>Zhang, Bo ; Sander, Pedro V. ; Tsui, Chi-Ying ; Bermak, Amine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Co-design</topic><topic>Complexity theory</topic><topic>Compression algorithms</topic><topic>FPGA implementation</topic><topic>Hardware</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image quality</topic><topic>image sensor</topic><topic>Microshift</topic><topic>MRF model</topic><topic>on-chip image compression</topic><topic>Power consumption</topic><topic>Power efficiency</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><topic>Uncertainty</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bo</creatorcontrib><creatorcontrib>Sander, Pedro V.</creatorcontrib><creatorcontrib>Tsui, Chi-Ying</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bo</au><au>Sander, Pedro V.</au><au>Tsui, Chi-Ying</au><au>Bermak, Amine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microshift: An Efficient Image Compression Algorithm for Hardware</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>3430</spage><epage>3443</epage><pages>3430-3443</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we propose a lossy image compression algorithm called microshift. We employ an algorithm-hardware co-design methodology, yielding a hardware-friendly compression approach with low power consumption. In our method, the image is first micro-shifted, and then the sub-quantized values are further compressed. Two methods, FAST and MRF models, are proposed to recover the bitdepth by exploiting the spatial correlation of natural images. Both methods can decompress images progressively. On an average, our compression algorithm can compress images to 1.25-bits per pixel with a resulting quality that outperforms the state-of-the-art on-chip compression algorithms in both peak signal-to-noise ratio and structural similarity. Then, we propose a hardware architecture and implement the algorithm on an FPGA. The results on the ASIC design further validate the low-hardware complexity and high-power efficiency, showing that our method is promising, particularly for low-power wireless vision sensor networks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2018.2880227</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9795-4673</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2019-11, Vol.29 (11), p.3430-3443 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2018_2880227 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Co-design Complexity theory Compression algorithms FPGA implementation Hardware Image coding Image compression Image quality image sensor Microshift MRF model on-chip image compression Power consumption Power efficiency Quantization (signal) Signal to noise ratio Uncertainty Wireless networks |
title | Microshift: An Efficient Image Compression Algorithm for Hardware |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microshift:%20An%20Efficient%20Image%20Compression%20Algorithm%20for%20Hardware&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Bo&rft.date=2019-11-01&rft.volume=29&rft.issue=11&rft.spage=3430&rft.epage=3443&rft.pages=3430-3443&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2018.2880227&rft_dat=%3Cproquest_cross%3E2311107071%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-a97f18b94b99054d97534dc9df136d5fdf92400e5b60efe835e687a3c8424e793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311107071&rft_id=info:pmid/&rft_ieee_id=8529272&rfr_iscdi=true |