Loading…
Source-Free Open Compound Domain Adaptation in Semantic Segmentation
In this work, we introduce a new concept, named source-free open compound domain adaptation (SF-OCDA), and study it in semantic segmentation. SF-OCDA is more challenging than the traditional domain adaptation but it is more practical. It jointly considers (1) the issues of data privacy and data stor...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2022-10, Vol.32 (10), p.7019-7032 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3 |
container_end_page | 7032 |
container_issue | 10 |
container_start_page | 7019 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 32 |
creator | Zhao, Yuyang Zhong, Zhun Luo, Zhiming Lee, Gim Hee Sebe, Nicu |
description | In this work, we introduce a new concept, named source-free open compound domain adaptation (SF-OCDA), and study it in semantic segmentation. SF-OCDA is more challenging than the traditional domain adaptation but it is more practical. It jointly considers (1) the issues of data privacy and data storage and (2) the scenario of multiple target domains and unseen open domains. In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model. The model is evaluated on the samples from the target and unseen open domains. To solve this problem, we present an effective framework by separating the training process into two stages: (1) pre-training a generalized source model and (2) adapting a target model with self-supervised learning. In our framework, we propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level, which can benefit the training of both stages. First, CPSS can significantly improve the generalization ability of the source model, providing more accurate pseudo-labels for the latter stage. Second, CPSS can reduce the influence of noisy pseudo-labels and also avoid the model overfitting to the target domain during self-supervised learning, consistently boosting the performance on the target and open domains. Experiments demonstrate that our method produces state-of-the-art results on the C-Driving dataset. Furthermore, our model also achieves the leading performance on CityScapes for domain generalization. |
doi_str_mv | 10.1109/TCSVT.2022.3179021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2022_3179021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785619</ieee_id><sourcerecordid>2721428513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwBeBSiXNH7DRtcpwKA6RJO6ziGqX5gzrRprTdgW9PRidOtuX37KcfIfdAVwBUPlXl_qNaIUVcMSgkRbggC-BcpIiUX8aeckgFAr8mN-N4oBQykRUL8rwPx8G4dDM4l-x61yVlaPtw7GzyHFrddMna6n7SUxO6JE571-puakxsPlvXzYtbcuX11-juznVJqs1LVb6l293re7nepoYxOaWc5rbWztsaNPPUeO81Qg25Ri60zm3MW5g6rxGtELk0QkKRZ2C1rVnm2ZI8zmf7IXwf3TipQwzfxY8KC4QMBQcWVTirzBDGcXBe9UPT6uFHAVUnWOoPljrBUmdY0fQwmxrn3L9BFoLnINkvJ8JmGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721428513</pqid></control><display><type>article</type><title>Source-Free Open Compound Domain Adaptation in Semantic Segmentation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Yuyang ; Zhong, Zhun ; Luo, Zhiming ; Lee, Gim Hee ; Sebe, Nicu</creator><creatorcontrib>Zhao, Yuyang ; Zhong, Zhun ; Luo, Zhiming ; Lee, Gim Hee ; Sebe, Nicu</creatorcontrib><description>In this work, we introduce a new concept, named source-free open compound domain adaptation (SF-OCDA), and study it in semantic segmentation. SF-OCDA is more challenging than the traditional domain adaptation but it is more practical. It jointly considers (1) the issues of data privacy and data storage and (2) the scenario of multiple target domains and unseen open domains. In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model. The model is evaluated on the samples from the target and unseen open domains. To solve this problem, we present an effective framework by separating the training process into two stages: (1) pre-training a generalized source model and (2) adapting a target model with self-supervised learning. In our framework, we propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level, which can benefit the training of both stages. First, CPSS can significantly improve the generalization ability of the source model, providing more accurate pseudo-labels for the latter stage. Second, CPSS can reduce the influence of noisy pseudo-labels and also avoid the model overfitting to the target domain during self-supervised learning, consistently boosting the performance on the target and open domains. Experiments demonstrate that our method produces state-of-the-art results on the C-Driving dataset. Furthermore, our model also achieves the leading performance on CityScapes for domain generalization.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3179021</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Compounds ; Data models ; Data storage ; Domains ; Image segmentation ; Labels ; open compound domain adaptation ; Semantic segmentation ; Semantics ; source-free domain adaptation ; Supervised learning ; Training ; Transfer learning</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.7019-7032</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3</citedby><cites>FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3</cites><orcidid>0000-0002-6597-7248 ; 0000-0002-8202-0544 ; 0000-0002-4754-0325 ; 0000-0002-3411-9582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhao, Yuyang</creatorcontrib><creatorcontrib>Zhong, Zhun</creatorcontrib><creatorcontrib>Luo, Zhiming</creatorcontrib><creatorcontrib>Lee, Gim Hee</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><title>Source-Free Open Compound Domain Adaptation in Semantic Segmentation</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this work, we introduce a new concept, named source-free open compound domain adaptation (SF-OCDA), and study it in semantic segmentation. SF-OCDA is more challenging than the traditional domain adaptation but it is more practical. It jointly considers (1) the issues of data privacy and data storage and (2) the scenario of multiple target domains and unseen open domains. In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model. The model is evaluated on the samples from the target and unseen open domains. To solve this problem, we present an effective framework by separating the training process into two stages: (1) pre-training a generalized source model and (2) adapting a target model with self-supervised learning. In our framework, we propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level, which can benefit the training of both stages. First, CPSS can significantly improve the generalization ability of the source model, providing more accurate pseudo-labels for the latter stage. Second, CPSS can reduce the influence of noisy pseudo-labels and also avoid the model overfitting to the target domain during self-supervised learning, consistently boosting the performance on the target and open domains. Experiments demonstrate that our method produces state-of-the-art results on the C-Driving dataset. Furthermore, our model also achieves the leading performance on CityScapes for domain generalization.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Compounds</subject><subject>Data models</subject><subject>Data storage</subject><subject>Domains</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>open compound domain adaptation</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>source-free domain adaptation</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Transfer learning</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwzAMxSMEEmPwBeBSiXNH7DRtcpwKA6RJO6ziGqX5gzrRprTdgW9PRidOtuX37KcfIfdAVwBUPlXl_qNaIUVcMSgkRbggC-BcpIiUX8aeckgFAr8mN-N4oBQykRUL8rwPx8G4dDM4l-x61yVlaPtw7GzyHFrddMna6n7SUxO6JE571-puakxsPlvXzYtbcuX11-juznVJqs1LVb6l293re7nepoYxOaWc5rbWztsaNPPUeO81Qg25Ri60zm3MW5g6rxGtELk0QkKRZ2C1rVnm2ZI8zmf7IXwf3TipQwzfxY8KC4QMBQcWVTirzBDGcXBe9UPT6uFHAVUnWOoPljrBUmdY0fQwmxrn3L9BFoLnINkvJ8JmGQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhao, Yuyang</creator><creator>Zhong, Zhun</creator><creator>Luo, Zhiming</creator><creator>Lee, Gim Hee</creator><creator>Sebe, Nicu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><orcidid>https://orcid.org/0000-0002-8202-0544</orcidid><orcidid>https://orcid.org/0000-0002-4754-0325</orcidid><orcidid>https://orcid.org/0000-0002-3411-9582</orcidid></search><sort><creationdate>20221001</creationdate><title>Source-Free Open Compound Domain Adaptation in Semantic Segmentation</title><author>Zhao, Yuyang ; Zhong, Zhun ; Luo, Zhiming ; Lee, Gim Hee ; Sebe, Nicu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Compounds</topic><topic>Data models</topic><topic>Data storage</topic><topic>Domains</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>open compound domain adaptation</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>source-free domain adaptation</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuyang</creatorcontrib><creatorcontrib>Zhong, Zhun</creatorcontrib><creatorcontrib>Luo, Zhiming</creatorcontrib><creatorcontrib>Lee, Gim Hee</creatorcontrib><creatorcontrib>Sebe, Nicu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuyang</au><au>Zhong, Zhun</au><au>Luo, Zhiming</au><au>Lee, Gim Hee</au><au>Sebe, Nicu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source-Free Open Compound Domain Adaptation in Semantic Segmentation</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>10</issue><spage>7019</spage><epage>7032</epage><pages>7019-7032</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this work, we introduce a new concept, named source-free open compound domain adaptation (SF-OCDA), and study it in semantic segmentation. SF-OCDA is more challenging than the traditional domain adaptation but it is more practical. It jointly considers (1) the issues of data privacy and data storage and (2) the scenario of multiple target domains and unseen open domains. In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model. The model is evaluated on the samples from the target and unseen open domains. To solve this problem, we present an effective framework by separating the training process into two stages: (1) pre-training a generalized source model and (2) adapting a target model with self-supervised learning. In our framework, we propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level, which can benefit the training of both stages. First, CPSS can significantly improve the generalization ability of the source model, providing more accurate pseudo-labels for the latter stage. Second, CPSS can reduce the influence of noisy pseudo-labels and also avoid the model overfitting to the target domain during self-supervised learning, consistently boosting the performance on the target and open domains. Experiments demonstrate that our method produces state-of-the-art results on the C-Driving dataset. Furthermore, our model also achieves the leading performance on CityScapes for domain generalization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3179021</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6597-7248</orcidid><orcidid>https://orcid.org/0000-0002-8202-0544</orcidid><orcidid>https://orcid.org/0000-0002-4754-0325</orcidid><orcidid>https://orcid.org/0000-0002-3411-9582</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2022-10, Vol.32 (10), p.7019-7032 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2022_3179021 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation Adaptation models Compounds Data models Data storage Domains Image segmentation Labels open compound domain adaptation Semantic segmentation Semantics source-free domain adaptation Supervised learning Training Transfer learning |
title | Source-Free Open Compound Domain Adaptation in Semantic Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source-Free%20Open%20Compound%20Domain%20Adaptation%20in%20Semantic%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhao,%20Yuyang&rft.date=2022-10-01&rft.volume=32&rft.issue=10&rft.spage=7019&rft.epage=7032&rft.pages=7019-7032&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3179021&rft_dat=%3Cproquest_cross%3E2721428513%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-506dbaefdb1a3f0cfffa21b16a258aa6d5587cb6b22d8869c8917641dadb34f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721428513&rft_id=info:pmid/&rft_ieee_id=9785619&rfr_iscdi=true |