Loading…

THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions

Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2024-07, Vol.34 (7), p.5229-5241
Main Authors: Li, Pengcheng, Gao, Chenqiang, Liu, Fangcen, Meng, Deyu, Yan, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3
container_end_page 5241
container_issue 7
container_start_page 5229
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Li, Pengcheng
Gao, Chenqiang
Liu, Fangcen
Meng, Deyu
Yan, Yan
description Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.
doi_str_mv 10.1109/TCSVT.2023.3341805
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2023_3341805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10353988</ieee_id><sourcerecordid>3075426461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOKf_gPgQ8LkzyTVN6pvMHxtMBVf1MXTptevo2tlkgv-9mduDcMfdwX2-X_gScsnZiHOW3mTj-Uc2EkzACCDmmskjMuBS6kgIJo_DziSPtODylJw5t2KMxzpWA_KZTabzF_S3NOs6v6TT1vm8tUjnWK2x9bmvu5aGgnt6v7sb-twV2Dj6Xed0UlfLJrSv2-og8IZVINw5OSnzxuHFYQ7J--NDNp5Es9en6fhuFlkRKx9hGiccbYloWSqSgpWsBJ0WCnABwHIOVulSMasEL4AzITiCyheFtEmhRQFDcr3X3fTd1xadN6tu27fB0gBTMhZJMAhfYv9l-865Hkuz6et13v8YzswuQPMXoNkFaA4BBuhqD9WI-A8ACanW8AutS2vT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426461</pqid></control><display><type>article</type><title>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</title><source>IEEE Xplore (Online service)</source><creator>Li, Pengcheng ; Gao, Chenqiang ; Liu, Fangcen ; Meng, Deyu ; Yan, Yan</creator><creatorcontrib>Li, Pengcheng ; Gao, Chenqiang ; Liu, Fangcen ; Meng, Deyu ; Yan, Yan</creatorcontrib><description>Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3341805</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D dental models ; Computational modeling ; Dental materials ; Dentistry ; highlighting ; Instance segmentation ; Labeling ; object affinity ; Solid modeling ; Teeth ; Three-dimensional displays ; Tooth segmentation</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-07, Vol.34 (7), p.5229-5241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3</cites><orcidid>0000-0002-1845-9907 ; 0000-0002-1294-8283 ; 0000-0003-4174-4148 ; 0000-0002-0691-7966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10353988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Liu, Fangcen</creatorcontrib><creatorcontrib>Meng, Deyu</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><title>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.</description><subject>3D dental models</subject><subject>Computational modeling</subject><subject>Dental materials</subject><subject>Dentistry</subject><subject>highlighting</subject><subject>Instance segmentation</subject><subject>Labeling</subject><subject>object affinity</subject><subject>Solid modeling</subject><subject>Teeth</subject><subject>Three-dimensional displays</subject><subject>Tooth segmentation</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkN9LwzAQx4MoOKf_gPgQ8LkzyTVN6pvMHxtMBVf1MXTptevo2tlkgv-9mduDcMfdwX2-X_gScsnZiHOW3mTj-Uc2EkzACCDmmskjMuBS6kgIJo_DziSPtODylJw5t2KMxzpWA_KZTabzF_S3NOs6v6TT1vm8tUjnWK2x9bmvu5aGgnt6v7sb-twV2Dj6Xed0UlfLJrSv2-og8IZVINw5OSnzxuHFYQ7J--NDNp5Es9en6fhuFlkRKx9hGiccbYloWSqSgpWsBJ0WCnABwHIOVulSMasEL4AzITiCyheFtEmhRQFDcr3X3fTd1xadN6tu27fB0gBTMhZJMAhfYv9l-865Hkuz6et13v8YzswuQPMXoNkFaA4BBuhqD9WI-A8ACanW8AutS2vT</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Pengcheng</creator><creator>Gao, Chenqiang</creator><creator>Liu, Fangcen</creator><creator>Meng, Deyu</creator><creator>Yan, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1845-9907</orcidid><orcidid>https://orcid.org/0000-0002-1294-8283</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid><orcidid>https://orcid.org/0000-0002-0691-7966</orcidid></search><sort><creationdate>20240701</creationdate><title>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</title><author>Li, Pengcheng ; Gao, Chenqiang ; Liu, Fangcen ; Meng, Deyu ; Yan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D dental models</topic><topic>Computational modeling</topic><topic>Dental materials</topic><topic>Dentistry</topic><topic>highlighting</topic><topic>Instance segmentation</topic><topic>Labeling</topic><topic>object affinity</topic><topic>Solid modeling</topic><topic>Teeth</topic><topic>Three-dimensional displays</topic><topic>Tooth segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Liu, Fangcen</creatorcontrib><creatorcontrib>Meng, Deyu</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Pengcheng</au><au>Gao, Chenqiang</au><au>Liu, Fangcen</au><au>Meng, Deyu</au><au>Yan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>7</issue><spage>5229</spage><epage>5241</epage><pages>5229-5241</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3341805</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1845-9907</orcidid><orcidid>https://orcid.org/0000-0002-1294-8283</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid><orcidid>https://orcid.org/0000-0002-0691-7966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-07, Vol.34 (7), p.5229-5241
issn 1051-8215
1558-2205
language eng
recordid cdi_crossref_primary_10_1109_TCSVT_2023_3341805
source IEEE Xplore (Online service)
subjects 3D dental models
Computational modeling
Dental materials
Dentistry
highlighting
Instance segmentation
Labeling
object affinity
Solid modeling
Teeth
Three-dimensional displays
Tooth segmentation
title THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THISNet:%20Tooth%20Instance%20Segmentation%20on%203D%20Dental%20Models%20via%20Highlighting%20Tooth%20Regions&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Li,%20Pengcheng&rft.date=2024-07-01&rft.volume=34&rft.issue=7&rft.spage=5229&rft.epage=5241&rft.pages=5229-5241&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3341805&rft_dat=%3Cproquest_cross%3E3075426461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075426461&rft_id=info:pmid/&rft_ieee_id=10353988&rfr_iscdi=true