Loading…
THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions
Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2024-07, Vol.34 (7), p.5229-5241 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3 |
container_end_page | 5241 |
container_issue | 7 |
container_start_page | 5229 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 34 |
creator | Li, Pengcheng Gao, Chenqiang Liu, Fangcen Meng, Deyu Yan, Yan |
description | Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications. |
doi_str_mv | 10.1109/TCSVT.2023.3341805 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSVT_2023_3341805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10353988</ieee_id><sourcerecordid>3075426461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOKf_gPgQ8LkzyTVN6pvMHxtMBVf1MXTptevo2tlkgv-9mduDcMfdwX2-X_gScsnZiHOW3mTj-Uc2EkzACCDmmskjMuBS6kgIJo_DziSPtODylJw5t2KMxzpWA_KZTabzF_S3NOs6v6TT1vm8tUjnWK2x9bmvu5aGgnt6v7sb-twV2Dj6Xed0UlfLJrSv2-og8IZVINw5OSnzxuHFYQ7J--NDNp5Es9en6fhuFlkRKx9hGiccbYloWSqSgpWsBJ0WCnABwHIOVulSMasEL4AzITiCyheFtEmhRQFDcr3X3fTd1xadN6tu27fB0gBTMhZJMAhfYv9l-865Hkuz6et13v8YzswuQPMXoNkFaA4BBuhqD9WI-A8ACanW8AutS2vT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426461</pqid></control><display><type>article</type><title>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</title><source>IEEE Xplore (Online service)</source><creator>Li, Pengcheng ; Gao, Chenqiang ; Liu, Fangcen ; Meng, Deyu ; Yan, Yan</creator><creatorcontrib>Li, Pengcheng ; Gao, Chenqiang ; Liu, Fangcen ; Meng, Deyu ; Yan, Yan</creatorcontrib><description>Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3341805</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D dental models ; Computational modeling ; Dental materials ; Dentistry ; highlighting ; Instance segmentation ; Labeling ; object affinity ; Solid modeling ; Teeth ; Three-dimensional displays ; Tooth segmentation</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-07, Vol.34 (7), p.5229-5241</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3</cites><orcidid>0000-0002-1845-9907 ; 0000-0002-1294-8283 ; 0000-0003-4174-4148 ; 0000-0002-0691-7966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10353988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Liu, Fangcen</creatorcontrib><creatorcontrib>Meng, Deyu</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><title>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.</description><subject>3D dental models</subject><subject>Computational modeling</subject><subject>Dental materials</subject><subject>Dentistry</subject><subject>highlighting</subject><subject>Instance segmentation</subject><subject>Labeling</subject><subject>object affinity</subject><subject>Solid modeling</subject><subject>Teeth</subject><subject>Three-dimensional displays</subject><subject>Tooth segmentation</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkN9LwzAQx4MoOKf_gPgQ8LkzyTVN6pvMHxtMBVf1MXTptevo2tlkgv-9mduDcMfdwX2-X_gScsnZiHOW3mTj-Uc2EkzACCDmmskjMuBS6kgIJo_DziSPtODylJw5t2KMxzpWA_KZTabzF_S3NOs6v6TT1vm8tUjnWK2x9bmvu5aGgnt6v7sb-twV2Dj6Xed0UlfLJrSv2-og8IZVINw5OSnzxuHFYQ7J--NDNp5Es9en6fhuFlkRKx9hGiccbYloWSqSgpWsBJ0WCnABwHIOVulSMasEL4AzITiCyheFtEmhRQFDcr3X3fTd1xadN6tu27fB0gBTMhZJMAhfYv9l-865Hkuz6et13v8YzswuQPMXoNkFaA4BBuhqD9WI-A8ACanW8AutS2vT</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Pengcheng</creator><creator>Gao, Chenqiang</creator><creator>Liu, Fangcen</creator><creator>Meng, Deyu</creator><creator>Yan, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1845-9907</orcidid><orcidid>https://orcid.org/0000-0002-1294-8283</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid><orcidid>https://orcid.org/0000-0002-0691-7966</orcidid></search><sort><creationdate>20240701</creationdate><title>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</title><author>Li, Pengcheng ; Gao, Chenqiang ; Liu, Fangcen ; Meng, Deyu ; Yan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D dental models</topic><topic>Computational modeling</topic><topic>Dental materials</topic><topic>Dentistry</topic><topic>highlighting</topic><topic>Instance segmentation</topic><topic>Labeling</topic><topic>object affinity</topic><topic>Solid modeling</topic><topic>Teeth</topic><topic>Three-dimensional displays</topic><topic>Tooth segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Gao, Chenqiang</creatorcontrib><creatorcontrib>Liu, Fangcen</creatorcontrib><creatorcontrib>Meng, Deyu</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Pengcheng</au><au>Gao, Chenqiang</au><au>Liu, Fangcen</au><au>Meng, Deyu</au><au>Yan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>34</volume><issue>7</issue><spage>5229</spage><epage>5241</epage><pages>5229-5241</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Automatic tooth instance segmentation on 3D dental models is crucial for digitizing dental treatments and enabling computer-assisted treatment planning. However, It is challenging since the tight arrangement of dental structures and the consequential impact of dental ailments on their morphological characteristics. To address these challenges, we propose a novel method called THISNet. Unlike existing methods, THISNet focuses on highlighting tooth regions rather than relying on bounding box detection, leading to improved accuracy in tooth segmentation and labeling. By incorporating the highlighted tooth regions with a tooth object affinity module, our method effectively integrates global contextual information, considering the relationships between neighboring teeth and their surrounding structures. THISNet adopts an end-to-end learning approach, reducing complexity and enhancing segmentation efficiency compared to multi-stage training methods. Experimental results demonstrate the superiority of THISNet over existing approaches, highlighting its potential in various dental clinical applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3341805</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1845-9907</orcidid><orcidid>https://orcid.org/0000-0002-1294-8283</orcidid><orcidid>https://orcid.org/0000-0003-4174-4148</orcidid><orcidid>https://orcid.org/0000-0002-0691-7966</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2024-07, Vol.34 (7), p.5229-5241 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSVT_2023_3341805 |
source | IEEE Xplore (Online service) |
subjects | 3D dental models Computational modeling Dental materials Dentistry highlighting Instance segmentation Labeling object affinity Solid modeling Teeth Three-dimensional displays Tooth segmentation |
title | THISNet: Tooth Instance Segmentation on 3D Dental Models via Highlighting Tooth Regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THISNet:%20Tooth%20Instance%20Segmentation%20on%203D%20Dental%20Models%20via%20Highlighting%20Tooth%20Regions&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Li,%20Pengcheng&rft.date=2024-07-01&rft.volume=34&rft.issue=7&rft.spage=5229&rft.epage=5241&rft.pages=5229-5241&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3341805&rft_dat=%3Cproquest_cross%3E3075426461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-e9461ecfeec0926d0f0f389d73eb330a13c78f70c721d310221e37abd5c6d82d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075426461&rft_id=info:pmid/&rft_ieee_id=10353988&rfr_iscdi=true |