Loading…
Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control
The dynamical relationship of the multiple agents' behavior in a networked system is explored and utilized to enhance the control performance of the multiagent formation in this paper. An adjacent-agent dynamic linearization is first presented for nonlinear and nonaffine multiagent systems (MAS...
Saved in:
Published in: | IEEE transactions on cybernetics 2020-10, Vol.50 (10), p.4358-4369 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3 |
container_end_page | 4369 |
container_issue | 10 |
container_start_page | 4358 |
container_title | IEEE transactions on cybernetics |
container_volume | 50 |
creator | Chi, Ronghu Hui, Yu Huang, Biao Hou, Zhongsheng |
description | The dynamical relationship of the multiple agents' behavior in a networked system is explored and utilized to enhance the control performance of the multiagent formation in this paper. An adjacent-agent dynamic linearization is first presented for nonlinear and nonaffine multiagent systems (MASs) and a virtual linear difference model is built between two adjacent agents communicating with each other. Considering causality, the agents are assigned as parent and child, respectively. Communication is from parent to child. Taking the advantage of the repetitive characteristics of a large class of MASs, an adjacent-agent dynamic linearization-based iterative learning formation control (ADL-ILFC) is proposed for the child agent using 3-D control knowledge from iterations, time instants, and the parent agent. The ADL-ILFC is a data-driven method and does not depend on a first-principle physical model but the virtual linear difference model. The validity of the proposed approach is demonstrated through rigorous analysis and extensive simulations. |
doi_str_mv | 10.1109/TCYB.2019.2899654 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2019_2899654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8662782</ieee_id><sourcerecordid>2446059022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIMobsz9ASJIwYuXzvxo0-S4VaeDwi7z4Cmk7evoaNOZdML8683c3MEcXt7L-94jfAjdEjwhBMunVfoxm1BM5IQKKXkcXaAhJVyElCbx5TnnyQCNndtgf4R_kuIaDRgWXHIWD9FyWm50AaYPp2sfg-e90W1dBFltQNv6W_d1Z8KZdlAGix6sr78gyHzP1GYdzDvb_iJB2pneds0Nuqp042B8ukfoff6ySt_CbPm6SKdZWLBI9iEUFHSVlKIqtS6wEBiIiERCqlIUklEs40hKoRnJc1kSqDhnEiKeiyRiVQVshB6Pe7e2-9yB61VbuwKaRhvodk5RIgmLmRTMow__0E23s8b_TtEo4jiWmFJPkSNV2M45C5Xa2rrVdq8IVgfh6iBcHYSrk3A_c3_avMtbKM8Tf3o9cHcEagA4twXnNBGU_QDlY4PC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446059022</pqid></control><display><type>article</type><title>Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chi, Ronghu ; Hui, Yu ; Huang, Biao ; Hou, Zhongsheng</creator><creatorcontrib>Chi, Ronghu ; Hui, Yu ; Huang, Biao ; Hou, Zhongsheng</creatorcontrib><description>The dynamical relationship of the multiple agents' behavior in a networked system is explored and utilized to enhance the control performance of the multiagent formation in this paper. An adjacent-agent dynamic linearization is first presented for nonlinear and nonaffine multiagent systems (MASs) and a virtual linear difference model is built between two adjacent agents communicating with each other. Considering causality, the agents are assigned as parent and child, respectively. Communication is from parent to child. Taking the advantage of the repetitive characteristics of a large class of MASs, an adjacent-agent dynamic linearization-based iterative learning formation control (ADL-ILFC) is proposed for the child agent using 3-D control knowledge from iterations, time instants, and the parent agent. The ADL-ILFC is a data-driven method and does not depend on a first-principle physical model but the virtual linear difference model. The validity of the proposed approach is demonstrated through rigorous analysis and extensive simulations.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2019.2899654</identifier><identifier>PMID: 30869635</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adjacent-agent dynamic linearization ; Communication ; Computer simulation ; data-driven control approach ; First principles ; iterative learning formation control ; Iterative methods ; Learning ; Learning systems ; Linearization ; Multi-agent systems ; Multiagent systems ; nonlinear nonaffine multiagent systems (MASs) ; Nonlinear systems ; Task analysis ; Uncertainty ; Vehicle dynamics</subject><ispartof>IEEE transactions on cybernetics, 2020-10, Vol.50 (10), p.4358-4369</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3</citedby><cites>FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3</cites><orcidid>0000-0002-1325-7863 ; 0000-0001-5278-3420 ; 0000-0001-9082-2216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8662782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30869635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chi, Ronghu</creatorcontrib><creatorcontrib>Hui, Yu</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><title>Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The dynamical relationship of the multiple agents' behavior in a networked system is explored and utilized to enhance the control performance of the multiagent formation in this paper. An adjacent-agent dynamic linearization is first presented for nonlinear and nonaffine multiagent systems (MASs) and a virtual linear difference model is built between two adjacent agents communicating with each other. Considering causality, the agents are assigned as parent and child, respectively. Communication is from parent to child. Taking the advantage of the repetitive characteristics of a large class of MASs, an adjacent-agent dynamic linearization-based iterative learning formation control (ADL-ILFC) is proposed for the child agent using 3-D control knowledge from iterations, time instants, and the parent agent. The ADL-ILFC is a data-driven method and does not depend on a first-principle physical model but the virtual linear difference model. The validity of the proposed approach is demonstrated through rigorous analysis and extensive simulations.</description><subject>Adjacent-agent dynamic linearization</subject><subject>Communication</subject><subject>Computer simulation</subject><subject>data-driven control approach</subject><subject>First principles</subject><subject>iterative learning formation control</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Linearization</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>nonlinear nonaffine multiagent systems (MASs)</subject><subject>Nonlinear systems</subject><subject>Task analysis</subject><subject>Uncertainty</subject><subject>Vehicle dynamics</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUgIMobsz9ASJIwYuXzvxo0-S4VaeDwi7z4Cmk7evoaNOZdML8683c3MEcXt7L-94jfAjdEjwhBMunVfoxm1BM5IQKKXkcXaAhJVyElCbx5TnnyQCNndtgf4R_kuIaDRgWXHIWD9FyWm50AaYPp2sfg-e90W1dBFltQNv6W_d1Z8KZdlAGix6sr78gyHzP1GYdzDvb_iJB2pneds0Nuqp042B8ukfoff6ySt_CbPm6SKdZWLBI9iEUFHSVlKIqtS6wEBiIiERCqlIUklEs40hKoRnJc1kSqDhnEiKeiyRiVQVshB6Pe7e2-9yB61VbuwKaRhvodk5RIgmLmRTMow__0E23s8b_TtEo4jiWmFJPkSNV2M45C5Xa2rrVdq8IVgfh6iBcHYSrk3A_c3_avMtbKM8Tf3o9cHcEagA4twXnNBGU_QDlY4PC</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chi, Ronghu</creator><creator>Hui, Yu</creator><creator>Huang, Biao</creator><creator>Hou, Zhongsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1325-7863</orcidid><orcidid>https://orcid.org/0000-0001-5278-3420</orcidid><orcidid>https://orcid.org/0000-0001-9082-2216</orcidid></search><sort><creationdate>20201001</creationdate><title>Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control</title><author>Chi, Ronghu ; Hui, Yu ; Huang, Biao ; Hou, Zhongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adjacent-agent dynamic linearization</topic><topic>Communication</topic><topic>Computer simulation</topic><topic>data-driven control approach</topic><topic>First principles</topic><topic>iterative learning formation control</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Linearization</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>nonlinear nonaffine multiagent systems (MASs)</topic><topic>Nonlinear systems</topic><topic>Task analysis</topic><topic>Uncertainty</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Ronghu</creatorcontrib><creatorcontrib>Hui, Yu</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><creatorcontrib>Hou, Zhongsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Ronghu</au><au>Hui, Yu</au><au>Huang, Biao</au><au>Hou, Zhongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>50</volume><issue>10</issue><spage>4358</spage><epage>4369</epage><pages>4358-4369</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The dynamical relationship of the multiple agents' behavior in a networked system is explored and utilized to enhance the control performance of the multiagent formation in this paper. An adjacent-agent dynamic linearization is first presented for nonlinear and nonaffine multiagent systems (MASs) and a virtual linear difference model is built between two adjacent agents communicating with each other. Considering causality, the agents are assigned as parent and child, respectively. Communication is from parent to child. Taking the advantage of the repetitive characteristics of a large class of MASs, an adjacent-agent dynamic linearization-based iterative learning formation control (ADL-ILFC) is proposed for the child agent using 3-D control knowledge from iterations, time instants, and the parent agent. The ADL-ILFC is a data-driven method and does not depend on a first-principle physical model but the virtual linear difference model. The validity of the proposed approach is demonstrated through rigorous analysis and extensive simulations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30869635</pmid><doi>10.1109/TCYB.2019.2899654</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1325-7863</orcidid><orcidid>https://orcid.org/0000-0001-5278-3420</orcidid><orcidid>https://orcid.org/0000-0001-9082-2216</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2020-10, Vol.50 (10), p.4358-4369 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCYB_2019_2899654 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adjacent-agent dynamic linearization Communication Computer simulation data-driven control approach First principles iterative learning formation control Iterative methods Learning Learning systems Linearization Multi-agent systems Multiagent systems nonlinear nonaffine multiagent systems (MASs) Nonlinear systems Task analysis Uncertainty Vehicle dynamics |
title | Adjacent-Agent Dynamic Linearization-Based Iterative Learning Formation Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjacent-Agent%20Dynamic%20Linearization-Based%20Iterative%20Learning%20Formation%20Control&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Chi,%20Ronghu&rft.date=2020-10-01&rft.volume=50&rft.issue=10&rft.spage=4358&rft.epage=4369&rft.pages=4358-4369&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2019.2899654&rft_dat=%3Cproquest_cross%3E2446059022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-ec2eaf7d8fdaac0880e184871fd8c9320954998a31bb9d1ef6639e46b8743ffe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446059022&rft_id=info:pmid/30869635&rft_ieee_id=8662782&rfr_iscdi=true |