Loading…
Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption
In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from imp...
Saved in:
Published in: | IEEE transactions on cybernetics 2022-08, Vol.52 (8), p.8246-8257 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3 |
container_end_page | 8257 |
container_issue | 8 |
container_start_page | 8246 |
container_title | IEEE transactions on cybernetics |
container_volume | 52 |
creator | Tan, Xuegang Xiang, Changcheng Cao, Jinde Xu, Wenying Wen, Guanghui Rutkowski, Leszek |
description | In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing. |
doi_str_mv | 10.1109/TCYB.2021.3049858 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2021_3049858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9345468</ieee_id><sourcerecordid>2486140511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EolXpB0BIyBKXXrL4f-xjWRWoVNFKXQ6cLCeZLC5ZO9hJYfvp8WqXPXQuM3r-zdNYD6G3lCwoJebjavnj04IRRhecCKOlfoFOGVW6YqyWL4-zqk_Qec4PpJQuktGv0QnnklPO6Cn6e78N7c8Ug39yk48Bxx5_gzm5obTpT0y_Mn70Dt9B8rHzLb6Hoa9Wya_XkKDD15txHrJ_BLyMYUpxwC4Udcr4chwH3-5NfSigWwO-Cm3ajjvtDXrVuyHD-aGfoe-fr1bLr9XN7Zfr5eVN1XJhpkoIJxg3pBZOCdmbrjbGiF6LVjujlWyAEcX7RkpGtOoa13QguNLcMCl72fAzdLH3HVP8PUOe7MbnFobBBYhztkxoRQWRlBb0wzP0Ic4plOssU4bqWihWF4ruqTbFnBP0dkx-49LWUmJ3ydhdMnaXjD0kU3beH5znZgPdceN_DgV4twc8AByfDRdSlL_8A-6fkZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691874627</pqid></control><display><type>article</type><title>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</title><source>IEEE Xplore (Online service)</source><creator>Tan, Xuegang ; Xiang, Changcheng ; Cao, Jinde ; Xu, Wenying ; Wen, Guanghui ; Rutkowski, Leszek</creator><creatorcontrib>Tan, Xuegang ; Xiang, Changcheng ; Cao, Jinde ; Xu, Wenying ; Wen, Guanghui ; Rutkowski, Leszek</creatorcontrib><description>In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3049858</identifier><identifier>PMID: 33531321</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Control theory ; Encryption ; Image encryption ; Image processing ; impulsive control ; Monitoring ; Neural networks ; neural networks (NNs) ; Neurons ; periodic self-triggered ; Real-time systems ; Sampling ; Signal processing algorithms ; Stability analysis ; Synchronism ; Synchronization</subject><ispartof>IEEE transactions on cybernetics, 2022-08, Vol.52 (8), p.8246-8257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</citedby><cites>FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</cites><orcidid>0000-0002-7894-105X ; 0000-0003-0070-8597 ; 0000-0002-9610-0289 ; 0000-0003-3133-7119 ; 0000-0002-6110-9160 ; 0000-0001-6960-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9345468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33531321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Xuegang</creatorcontrib><creatorcontrib>Xiang, Changcheng</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Xu, Wenying</creatorcontrib><creatorcontrib>Wen, Guanghui</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><title>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Control theory</subject><subject>Encryption</subject><subject>Image encryption</subject><subject>Image processing</subject><subject>impulsive control</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Neurons</subject><subject>periodic self-triggered</subject><subject>Real-time systems</subject><subject>Sampling</subject><subject>Signal processing algorithms</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU9v1DAQxS0EolXpB0BIyBKXXrL4f-xjWRWoVNFKXQ6cLCeZLC5ZO9hJYfvp8WqXPXQuM3r-zdNYD6G3lCwoJebjavnj04IRRhecCKOlfoFOGVW6YqyWL4-zqk_Qec4PpJQuktGv0QnnklPO6Cn6e78N7c8Ug39yk48Bxx5_gzm5obTpT0y_Mn70Dt9B8rHzLb6Hoa9Wya_XkKDD15txHrJ_BLyMYUpxwC4Udcr4chwH3-5NfSigWwO-Cm3ajjvtDXrVuyHD-aGfoe-fr1bLr9XN7Zfr5eVN1XJhpkoIJxg3pBZOCdmbrjbGiF6LVjujlWyAEcX7RkpGtOoa13QguNLcMCl72fAzdLH3HVP8PUOe7MbnFobBBYhztkxoRQWRlBb0wzP0Ic4plOssU4bqWihWF4ruqTbFnBP0dkx-49LWUmJ3ydhdMnaXjD0kU3beH5znZgPdceN_DgV4twc8AByfDRdSlL_8A-6fkZs</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Tan, Xuegang</creator><creator>Xiang, Changcheng</creator><creator>Cao, Jinde</creator><creator>Xu, Wenying</creator><creator>Wen, Guanghui</creator><creator>Rutkowski, Leszek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7894-105X</orcidid><orcidid>https://orcid.org/0000-0003-0070-8597</orcidid><orcidid>https://orcid.org/0000-0002-9610-0289</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0002-6110-9160</orcidid><orcidid>https://orcid.org/0000-0001-6960-9525</orcidid></search><sort><creationdate>20220801</creationdate><title>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</title><author>Tan, Xuegang ; Xiang, Changcheng ; Cao, Jinde ; Xu, Wenying ; Wen, Guanghui ; Rutkowski, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Control theory</topic><topic>Encryption</topic><topic>Image encryption</topic><topic>Image processing</topic><topic>impulsive control</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Neurons</topic><topic>periodic self-triggered</topic><topic>Real-time systems</topic><topic>Sampling</topic><topic>Signal processing algorithms</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xuegang</creatorcontrib><creatorcontrib>Xiang, Changcheng</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Xu, Wenying</creatorcontrib><creatorcontrib>Wen, Guanghui</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xuegang</au><au>Xiang, Changcheng</au><au>Cao, Jinde</au><au>Xu, Wenying</au><au>Wen, Guanghui</au><au>Rutkowski, Leszek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>52</volume><issue>8</issue><spage>8246</spage><epage>8257</epage><pages>8246-8257</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33531321</pmid><doi>10.1109/TCYB.2021.3049858</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7894-105X</orcidid><orcidid>https://orcid.org/0000-0003-0070-8597</orcidid><orcidid>https://orcid.org/0000-0002-9610-0289</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0002-6110-9160</orcidid><orcidid>https://orcid.org/0000-0001-6960-9525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2022-08, Vol.52 (8), p.8246-8257 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCYB_2021_3049858 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial neural networks Control theory Encryption Image encryption Image processing impulsive control Monitoring Neural networks neural networks (NNs) Neurons periodic self-triggered Real-time systems Sampling Signal processing algorithms Stability analysis Synchronism Synchronization |
title | Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20Neural%20Networks%20via%20Periodic%20Self-Triggered%20Impulsive%20Control%20and%20Its%20Application%20in%20Image%20Encryption&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Tan,%20Xuegang&rft.date=2022-08-01&rft.volume=52&rft.issue=8&rft.spage=8246&rft.epage=8257&rft.pages=8246-8257&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3049858&rft_dat=%3Cproquest_cross%3E2486140511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691874627&rft_id=info:pmid/33531321&rft_ieee_id=9345468&rfr_iscdi=true |