Loading…

Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption

In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from imp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2022-08, Vol.52 (8), p.8246-8257
Main Authors: Tan, Xuegang, Xiang, Changcheng, Cao, Jinde, Xu, Wenying, Wen, Guanghui, Rutkowski, Leszek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3
cites cdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3
container_end_page 8257
container_issue 8
container_start_page 8246
container_title IEEE transactions on cybernetics
container_volume 52
creator Tan, Xuegang
Xiang, Changcheng
Cao, Jinde
Xu, Wenying
Wen, Guanghui
Rutkowski, Leszek
description In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.
doi_str_mv 10.1109/TCYB.2021.3049858
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2021_3049858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9345468</ieee_id><sourcerecordid>2486140511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EolXpB0BIyBKXXrL4f-xjWRWoVNFKXQ6cLCeZLC5ZO9hJYfvp8WqXPXQuM3r-zdNYD6G3lCwoJebjavnj04IRRhecCKOlfoFOGVW6YqyWL4-zqk_Qec4PpJQuktGv0QnnklPO6Cn6e78N7c8Ug39yk48Bxx5_gzm5obTpT0y_Mn70Dt9B8rHzLb6Hoa9Wya_XkKDD15txHrJ_BLyMYUpxwC4Udcr4chwH3-5NfSigWwO-Cm3ajjvtDXrVuyHD-aGfoe-fr1bLr9XN7Zfr5eVN1XJhpkoIJxg3pBZOCdmbrjbGiF6LVjujlWyAEcX7RkpGtOoa13QguNLcMCl72fAzdLH3HVP8PUOe7MbnFobBBYhztkxoRQWRlBb0wzP0Ic4plOssU4bqWihWF4ruqTbFnBP0dkx-49LWUmJ3ydhdMnaXjD0kU3beH5znZgPdceN_DgV4twc8AByfDRdSlL_8A-6fkZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691874627</pqid></control><display><type>article</type><title>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</title><source>IEEE Xplore (Online service)</source><creator>Tan, Xuegang ; Xiang, Changcheng ; Cao, Jinde ; Xu, Wenying ; Wen, Guanghui ; Rutkowski, Leszek</creator><creatorcontrib>Tan, Xuegang ; Xiang, Changcheng ; Cao, Jinde ; Xu, Wenying ; Wen, Guanghui ; Rutkowski, Leszek</creatorcontrib><description>In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3049858</identifier><identifier>PMID: 33531321</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Control theory ; Encryption ; Image encryption ; Image processing ; impulsive control ; Monitoring ; Neural networks ; neural networks (NNs) ; Neurons ; periodic self-triggered ; Real-time systems ; Sampling ; Signal processing algorithms ; Stability analysis ; Synchronism ; Synchronization</subject><ispartof>IEEE transactions on cybernetics, 2022-08, Vol.52 (8), p.8246-8257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</citedby><cites>FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</cites><orcidid>0000-0002-7894-105X ; 0000-0003-0070-8597 ; 0000-0002-9610-0289 ; 0000-0003-3133-7119 ; 0000-0002-6110-9160 ; 0000-0001-6960-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9345468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33531321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Xuegang</creatorcontrib><creatorcontrib>Xiang, Changcheng</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Xu, Wenying</creatorcontrib><creatorcontrib>Wen, Guanghui</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><title>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Control theory</subject><subject>Encryption</subject><subject>Image encryption</subject><subject>Image processing</subject><subject>impulsive control</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>neural networks (NNs)</subject><subject>Neurons</subject><subject>periodic self-triggered</subject><subject>Real-time systems</subject><subject>Sampling</subject><subject>Signal processing algorithms</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU9v1DAQxS0EolXpB0BIyBKXXrL4f-xjWRWoVNFKXQ6cLCeZLC5ZO9hJYfvp8WqXPXQuM3r-zdNYD6G3lCwoJebjavnj04IRRhecCKOlfoFOGVW6YqyWL4-zqk_Qec4PpJQuktGv0QnnklPO6Cn6e78N7c8Ug39yk48Bxx5_gzm5obTpT0y_Mn70Dt9B8rHzLb6Hoa9Wya_XkKDD15txHrJ_BLyMYUpxwC4Udcr4chwH3-5NfSigWwO-Cm3ajjvtDXrVuyHD-aGfoe-fr1bLr9XN7Zfr5eVN1XJhpkoIJxg3pBZOCdmbrjbGiF6LVjujlWyAEcX7RkpGtOoa13QguNLcMCl72fAzdLH3HVP8PUOe7MbnFobBBYhztkxoRQWRlBb0wzP0Ic4plOssU4bqWihWF4ruqTbFnBP0dkx-49LWUmJ3ydhdMnaXjD0kU3beH5znZgPdceN_DgV4twc8AByfDRdSlL_8A-6fkZs</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Tan, Xuegang</creator><creator>Xiang, Changcheng</creator><creator>Cao, Jinde</creator><creator>Xu, Wenying</creator><creator>Wen, Guanghui</creator><creator>Rutkowski, Leszek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7894-105X</orcidid><orcidid>https://orcid.org/0000-0003-0070-8597</orcidid><orcidid>https://orcid.org/0000-0002-9610-0289</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0002-6110-9160</orcidid><orcidid>https://orcid.org/0000-0001-6960-9525</orcidid></search><sort><creationdate>20220801</creationdate><title>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</title><author>Tan, Xuegang ; Xiang, Changcheng ; Cao, Jinde ; Xu, Wenying ; Wen, Guanghui ; Rutkowski, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Control theory</topic><topic>Encryption</topic><topic>Image encryption</topic><topic>Image processing</topic><topic>impulsive control</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>neural networks (NNs)</topic><topic>Neurons</topic><topic>periodic self-triggered</topic><topic>Real-time systems</topic><topic>Sampling</topic><topic>Signal processing algorithms</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xuegang</creatorcontrib><creatorcontrib>Xiang, Changcheng</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Xu, Wenying</creatorcontrib><creatorcontrib>Wen, Guanghui</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xuegang</au><au>Xiang, Changcheng</au><au>Cao, Jinde</au><au>Xu, Wenying</au><au>Wen, Guanghui</au><au>Rutkowski, Leszek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>52</volume><issue>8</issue><spage>8246</spage><epage>8257</epage><pages>8246-8257</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>In this article, a periodic self-triggered impulsive (PSTI) control scheme is proposed to achieve synchronization of neural networks (NNs). Two kinds of impulsive gains with constant and random values are considered, and the corresponding synchronization criteria are obtained based on tools from impulsive control, event-driven control theory, and stability analysis. The designed triggering protocol is simpler, easier to implement, and more flexible compared with some previously reported algorithms as the protocol combines the advantages of the periodic sampling and event-driven control. In addition, the chaotic synchronization of NNs via the presented PSTI sampling is further applied to encrypt images. Several examples are also utilized to illustrate the validity of the presented synchronization algorithm of NNs based on PSTI control and its potential applications in image processing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33531321</pmid><doi>10.1109/TCYB.2021.3049858</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7894-105X</orcidid><orcidid>https://orcid.org/0000-0003-0070-8597</orcidid><orcidid>https://orcid.org/0000-0002-9610-0289</orcidid><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0002-6110-9160</orcidid><orcidid>https://orcid.org/0000-0001-6960-9525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2022-08, Vol.52 (8), p.8246-8257
issn 2168-2267
2168-2275
language eng
recordid cdi_crossref_primary_10_1109_TCYB_2021_3049858
source IEEE Xplore (Online service)
subjects Algorithms
Artificial neural networks
Control theory
Encryption
Image encryption
Image processing
impulsive control
Monitoring
Neural networks
neural networks (NNs)
Neurons
periodic self-triggered
Real-time systems
Sampling
Signal processing algorithms
Stability analysis
Synchronism
Synchronization
title Synchronization of Neural Networks via Periodic Self-Triggered Impulsive Control and Its Application in Image Encryption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20Neural%20Networks%20via%20Periodic%20Self-Triggered%20Impulsive%20Control%20and%20Its%20Application%20in%20Image%20Encryption&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Tan,%20Xuegang&rft.date=2022-08-01&rft.volume=52&rft.issue=8&rft.spage=8246&rft.epage=8257&rft.pages=8246-8257&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3049858&rft_dat=%3Cproquest_cross%3E2486140511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-44a4239074a645f9d79994f84c8a9865be2063fb552086dbabde436839255f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691874627&rft_id=info:pmid/33531321&rft_ieee_id=9345468&rfr_iscdi=true