Loading…

Spatial Reusability-Aware Routing in Multi-Hop Wireless Networks

In the problem of routing in multi-hop wireless networks, to achieve high end-to-end throughput, it is crucial to find the "best" path from the source node to the destination node. Although a large number of routing protocols have been proposed to find the path with minimum total transmiss...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2016-01, Vol.65 (1), p.244-255
Main Authors: Tong Meng, Fan Wu, Zheng Yang, Guihai Chen, Vasilakos, Athanasios V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the problem of routing in multi-hop wireless networks, to achieve high end-to-end throughput, it is crucial to find the "best" path from the source node to the destination node. Although a large number of routing protocols have been proposed to find the path with minimum total transmission count/time for delivering a single packet, such transmission count/time minimizing protocols cannot be guaranteed to achieve maximum end-to-end throughput. In this paper, we argue that by carefully considering spatial reusability of the wireless communication media, we can tremendously improve the end-to-end throughput in multi-hop wireless networks. To support our argument, we propose spatial reusability-aware single-path routing (SASR) and anypath routing (SAAR) protocols, and compare them with existing single-path routing and anypath routing protocols, respectively. Our evaluation results show that our protocols significantly improve the end-to-end throughput compared with existing protocols. Specifically, for single-path routing, the median throughput gain is up to 60 percent, and for each source-destination pair, the throughput gain is as high as 5.3x; for anypath routing, the maximum per-flow throughput gain is 71.6 percent, while the median gain is up to 13.2 percent.
ISSN:0018-9340
1557-9956
1557-9956
DOI:10.1109/TC.2015.2417543