Loading…
FTCAM: An Area-Efficient Flash-Based Ternary CAM Design
This paper presents a Ternary Content-addressable Memory (TCAM) design which is based on the use of floating-gate (flash) transistors. TCAMs are extensively used in high speed IP networking, and are commonly found in routers in the internet core. Traditional TCAM ICs are built using CMOS devices, an...
Saved in:
Published in: | IEEE transactions on computers 2016-08, Vol.65 (8), p.2652-2658 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a Ternary Content-addressable Memory (TCAM) design which is based on the use of floating-gate (flash) transistors. TCAMs are extensively used in high speed IP networking, and are commonly found in routers in the internet core. Traditional TCAM ICs are built using CMOS devices, and a single TCAM cell utilizes 17 transistors. In contrast, our TCAM cell utilizes only two flash transistors, thereby significantly reducing circuit area. We cover the chip-level architecture of the TCAM IC briefly, focusing mainly on the TCAM block which does fast parallel IP routing table lookup. Our flash-based TCAM (FTCAM) block is simulated in SPICE, and we show that it has a significantly lowered area compared to a CMOS based TCAM block, with a speed that can meet current ( \sim 400 Gb/s) data rates that are found in the internet core. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/TC.2015.2493535 |