Loading…
Correctly Rounded Arbitrary-Precision Floating-Point Summation
We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a wo...
Saved in:
Published in: | IEEE transactions on computers 2017-12, Vol.66 (12), p.2111-2124 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3 |
container_end_page | 2124 |
container_issue | 12 |
container_start_page | 2111 |
container_title | IEEE transactions on computers |
container_volume | 66 |
creator | Lefevre, Vincent |
description | We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested. |
doi_str_mv | 10.1109/TC.2017.2690632 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TC_2017_2690632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891894</ieee_id><sourcerecordid>2174385266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKtrF24GXLmYNq_JYyOUwVqhYNG6Dukk0ZTppGZmhP57U6Z0dbn3fudwOADcIzhBCMrpupxgiPgEMwkZwRdghIqC51IW7BKMIEQil4TCa3DTtlsIIcNQjsBzGWK0VVcfso_QN8aabBY3vos6HvJV-vjWhyab10F3vvnOV8E3XfbZ73ZpD80tuHK6bu3daY7B1_xlXS7y5fvrWzlb5hVhtMupNlpC6ggS3FUUGU021DDkHOfYUFxUyGAnNS-0s8wIqjGtBMRWM1ZouSFj8DT4_uha7aPfpXgqaK8Ws6U63iAikmIh_3BiHwd2H8Nvb9tObUMfmxRPYcQpEQVmLFHTgapiaNto3dkWQXUsVK1LdSxUnQpNiodB4a21Z5oLiYSk5B8q1HBC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174385266</pqid></control><display><type>article</type><title>Correctly Rounded Arbitrary-Precision Floating-Point Summation</title><source>IEEE Xplore (Online service)</source><creator>Lefevre, Vincent</creator><creatorcontrib>Lefevre, Vincent</creatorcontrib><description>We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2017.2690632</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; arbitrary precision ; Complexity theory ; Computer Arithmetic ; Computer Science ; Context awareness ; correct rounding ; floating point ; Floating point arithmetic ; multiple precision ; Open area test sites ; Summation</subject><ispartof>IEEE transactions on computers, 2017-12, Vol.66 (12), p.2111-2124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</citedby><cites>FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</cites><orcidid>0000-0002-4045-8273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01394289$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefevre, Vincent</creatorcontrib><title>Correctly Rounded Arbitrary-Precision Floating-Point Summation</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.</description><subject>Algorithms</subject><subject>arbitrary precision</subject><subject>Complexity theory</subject><subject>Computer Arithmetic</subject><subject>Computer Science</subject><subject>Context awareness</subject><subject>correct rounding</subject><subject>floating point</subject><subject>Floating point arithmetic</subject><subject>multiple precision</subject><subject>Open area test sites</subject><subject>Summation</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKtrF24GXLmYNq_JYyOUwVqhYNG6Dukk0ZTppGZmhP57U6Z0dbn3fudwOADcIzhBCMrpupxgiPgEMwkZwRdghIqC51IW7BKMIEQil4TCa3DTtlsIIcNQjsBzGWK0VVcfso_QN8aabBY3vos6HvJV-vjWhyab10F3vvnOV8E3XfbZ73ZpD80tuHK6bu3daY7B1_xlXS7y5fvrWzlb5hVhtMupNlpC6ggS3FUUGU021DDkHOfYUFxUyGAnNS-0s8wIqjGtBMRWM1ZouSFj8DT4_uha7aPfpXgqaK8Ws6U63iAikmIh_3BiHwd2H8Nvb9tObUMfmxRPYcQpEQVmLFHTgapiaNto3dkWQXUsVK1LdSxUnQpNiodB4a21Z5oLiYSk5B8q1HBC</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Lefevre, Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4045-8273</orcidid></search><sort><creationdate>20171201</creationdate><title>Correctly Rounded Arbitrary-Precision Floating-Point Summation</title><author>Lefevre, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>arbitrary precision</topic><topic>Complexity theory</topic><topic>Computer Arithmetic</topic><topic>Computer Science</topic><topic>Context awareness</topic><topic>correct rounding</topic><topic>floating point</topic><topic>Floating point arithmetic</topic><topic>multiple precision</topic><topic>Open area test sites</topic><topic>Summation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefevre, Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefevre, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correctly Rounded Arbitrary-Precision Floating-Point Summation</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>66</volume><issue>12</issue><spage>2111</spage><epage>2124</epage><pages>2111-2124</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2017.2690632</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4045-8273</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2017-12, Vol.66 (12), p.2111-2124 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TC_2017_2690632 |
source | IEEE Xplore (Online service) |
subjects | Algorithms arbitrary precision Complexity theory Computer Arithmetic Computer Science Context awareness correct rounding floating point Floating point arithmetic multiple precision Open area test sites Summation |
title | Correctly Rounded Arbitrary-Precision Floating-Point Summation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correctly%20Rounded%20Arbitrary-Precision%20Floating-Point%20Summation&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Lefevre,%20Vincent&rft.date=2017-12-01&rft.volume=66&rft.issue=12&rft.spage=2111&rft.epage=2124&rft.pages=2111-2124&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2017.2690632&rft_dat=%3Cproquest_cross%3E2174385266%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174385266&rft_id=info:pmid/&rft_ieee_id=7891894&rfr_iscdi=true |