Loading…

Correctly Rounded Arbitrary-Precision Floating-Point Summation

We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a wo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2017-12, Vol.66 (12), p.2111-2124
Main Author: Lefevre, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3
cites cdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3
container_end_page 2124
container_issue 12
container_start_page 2111
container_title IEEE transactions on computers
container_volume 66
creator Lefevre, Vincent
description We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.
doi_str_mv 10.1109/TC.2017.2690632
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TC_2017_2690632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891894</ieee_id><sourcerecordid>2174385266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKtrF24GXLmYNq_JYyOUwVqhYNG6Dukk0ZTppGZmhP57U6Z0dbn3fudwOADcIzhBCMrpupxgiPgEMwkZwRdghIqC51IW7BKMIEQil4TCa3DTtlsIIcNQjsBzGWK0VVcfso_QN8aabBY3vos6HvJV-vjWhyab10F3vvnOV8E3XfbZ73ZpD80tuHK6bu3daY7B1_xlXS7y5fvrWzlb5hVhtMupNlpC6ggS3FUUGU021DDkHOfYUFxUyGAnNS-0s8wIqjGtBMRWM1ZouSFj8DT4_uha7aPfpXgqaK8Ws6U63iAikmIh_3BiHwd2H8Nvb9tObUMfmxRPYcQpEQVmLFHTgapiaNto3dkWQXUsVK1LdSxUnQpNiodB4a21Z5oLiYSk5B8q1HBC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174385266</pqid></control><display><type>article</type><title>Correctly Rounded Arbitrary-Precision Floating-Point Summation</title><source>IEEE Xplore (Online service)</source><creator>Lefevre, Vincent</creator><creatorcontrib>Lefevre, Vincent</creatorcontrib><description>We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2017.2690632</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; arbitrary precision ; Complexity theory ; Computer Arithmetic ; Computer Science ; Context awareness ; correct rounding ; floating point ; Floating point arithmetic ; multiple precision ; Open area test sites ; Summation</subject><ispartof>IEEE transactions on computers, 2017-12, Vol.66 (12), p.2111-2124</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</citedby><cites>FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</cites><orcidid>0000-0002-4045-8273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54774</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01394289$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefevre, Vincent</creatorcontrib><title>Correctly Rounded Arbitrary-Precision Floating-Point Summation</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.</description><subject>Algorithms</subject><subject>arbitrary precision</subject><subject>Complexity theory</subject><subject>Computer Arithmetic</subject><subject>Computer Science</subject><subject>Context awareness</subject><subject>correct rounding</subject><subject>floating point</subject><subject>Floating point arithmetic</subject><subject>multiple precision</subject><subject>Open area test sites</subject><subject>Summation</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKtrF24GXLmYNq_JYyOUwVqhYNG6Dukk0ZTppGZmhP57U6Z0dbn3fudwOADcIzhBCMrpupxgiPgEMwkZwRdghIqC51IW7BKMIEQil4TCa3DTtlsIIcNQjsBzGWK0VVcfso_QN8aabBY3vos6HvJV-vjWhyab10F3vvnOV8E3XfbZ73ZpD80tuHK6bu3daY7B1_xlXS7y5fvrWzlb5hVhtMupNlpC6ggS3FUUGU021DDkHOfYUFxUyGAnNS-0s8wIqjGtBMRWM1ZouSFj8DT4_uha7aPfpXgqaK8Ws6U63iAikmIh_3BiHwd2H8Nvb9tObUMfmxRPYcQpEQVmLFHTgapiaNto3dkWQXUsVK1LdSxUnQpNiodB4a21Z5oLiYSk5B8q1HBC</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Lefevre, Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4045-8273</orcidid></search><sort><creationdate>20171201</creationdate><title>Correctly Rounded Arbitrary-Precision Floating-Point Summation</title><author>Lefevre, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>arbitrary precision</topic><topic>Complexity theory</topic><topic>Computer Arithmetic</topic><topic>Computer Science</topic><topic>Context awareness</topic><topic>correct rounding</topic><topic>floating point</topic><topic>Floating point arithmetic</topic><topic>multiple precision</topic><topic>Open area test sites</topic><topic>Summation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefevre, Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefevre, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correctly Rounded Arbitrary-Precision Floating-Point Summation</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>66</volume><issue>12</issue><spage>2111</spage><epage>2124</epage><pages>2111-2124</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>We present a fast algorithm together with its low-level implementation of correctly rounded arbitrary-precision floating-point summation. The arithmetic is the one used by the GNU MPFR library: radix 2; no subnormals; each variable (each input and the output) has its own precision. We also give a worst-case complexity of this algorithm and describe how the implementation is tested.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2017.2690632</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4045-8273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2017-12, Vol.66 (12), p.2111-2124
issn 0018-9340
1557-9956
language eng
recordid cdi_crossref_primary_10_1109_TC_2017_2690632
source IEEE Xplore (Online service)
subjects Algorithms
arbitrary precision
Complexity theory
Computer Arithmetic
Computer Science
Context awareness
correct rounding
floating point
Floating point arithmetic
multiple precision
Open area test sites
Summation
title Correctly Rounded Arbitrary-Precision Floating-Point Summation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correctly%20Rounded%20Arbitrary-Precision%20Floating-Point%20Summation&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Lefevre,%20Vincent&rft.date=2017-12-01&rft.volume=66&rft.issue=12&rft.spage=2111&rft.epage=2124&rft.pages=2111-2124&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2017.2690632&rft_dat=%3Cproquest_cross%3E2174385266%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4ada904f3187fc41da3b4d61ff772d425c1d2f9a75afe6d84a24c802ea665a9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174385266&rft_id=info:pmid/&rft_ieee_id=7891894&rfr_iscdi=true