Loading…

NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA Systems

Random number generation is essential for applications in simulation, numerical analysis, and data encryption. The ubiquitous presence of system-on-chip (SoC) field-programmable gate array (FPGA) embedded devices in critical sectors necessitates robust random number generators (RNGs) that operate wi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2024-05, Vol.73 (5), p.1313-1326
Main Authors: Chen, Yucong, Tian, Yanshan, Zhou, Rui, Martinez Castro, Diego, Guo, Deke, Zhou, Qingguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-6d12910e21ac6998d430c2b3fb91cd9b789364c0a64068d1f980fcd11eef6e733
container_end_page 1326
container_issue 5
container_start_page 1313
container_title IEEE transactions on computers
container_volume 73
creator Chen, Yucong
Tian, Yanshan
Zhou, Rui
Martinez Castro, Diego
Guo, Deke
Zhou, Qingguo
description Random number generation is essential for applications in simulation, numerical analysis, and data encryption. The ubiquitous presence of system-on-chip (SoC) field-programmable gate array (FPGA) embedded devices in critical sectors necessitates robust random number generators (RNGs) that operate within these specialized environments. Traditional RNGs in GNU/Linux systems derive entropy from peripheral hardware events, which are scarce in SoC FPGA platforms lacking standard PC peripherals. Addressing this challenge, this paper proposes a novel random number generator named NDSTRNG that leverages the unique hardware structure of the SoC FPGA and the inherent randomness of GNU/Linux. The proposed generator employs a non-deterministic sampling model to circumvent reliance on various peripherals while ensuring unbiased output via a linear feedback shift register (LFSR)-based post-processing method. We implement this random number generator in SoC FPGA GNU/Linux using minimal FPGA resources and only one Linux task for sampling. NDSTRNG achieved a throughput exceeding 700 Kbps. Moreover, the entropy source of the generator is evaluated using NIST SP 800-90B, while the quality of the generated random numbers is assessed through ENT, NIST SP 800-22, and DIEHARDER. The results confirm that NDSTRNG meets the stringent criteria for both high-quality and high-speed random number generation, making it suitable for deployment in communication, defense, and medical domains where reliable RNGs are indispensable.
doi_str_mv 10.1109/TC.2024.3365955
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TC_2024_3365955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10436529</ieee_id><sourcerecordid>3035278181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-6d12910e21ac6998d430c2b3fb91cd9b789364c0a64068d1f980fcd11eef6e733</originalsourceid><addsrcrecordid>eNpNkE1Pg0AURSdGE2t17cbFJK5p33wwMO6U2mrSoCm4cUMGeBiaAnUGFv330rQLV29xz70vOYTcM5gxBnqeRjMOXM6EUL72_QsyYb4feFr76pJMAFjoaSHhmtw4twUAxUFPyHe8SNJNvHqicdd6C-zRNnVbu74uaGKa_a5uf7wX47CkqR2Qbkxbdg2NhyZHS1fYojV9Z2nX0qSL6PJz9UyTg-uxcbfkqjI7h3fnOyVfy9c0evPWH6v36HntFVzK3lMl45oBcmYKpXVYSgEFz0WVa1aUOg9CLZQswCgJKixZpUOoipIxxEphIMSUPJ5297b7HdD12bYbbDu-zAQInwchC9lIzU9UYTvnLFbZ3taNsYeMQXYUmKVRdhSYnQWOjYdTo0bEf7Qcc67FH58Uago</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3035278181</pqid></control><display><type>article</type><title>NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Yucong ; Tian, Yanshan ; Zhou, Rui ; Martinez Castro, Diego ; Guo, Deke ; Zhou, Qingguo</creator><creatorcontrib>Chen, Yucong ; Tian, Yanshan ; Zhou, Rui ; Martinez Castro, Diego ; Guo, Deke ; Zhou, Qingguo</creatorcontrib><description>Random number generation is essential for applications in simulation, numerical analysis, and data encryption. The ubiquitous presence of system-on-chip (SoC) field-programmable gate array (FPGA) embedded devices in critical sectors necessitates robust random number generators (RNGs) that operate within these specialized environments. Traditional RNGs in GNU/Linux systems derive entropy from peripheral hardware events, which are scarce in SoC FPGA platforms lacking standard PC peripherals. Addressing this challenge, this paper proposes a novel random number generator named NDSTRNG that leverages the unique hardware structure of the SoC FPGA and the inherent randomness of GNU/Linux. The proposed generator employs a non-deterministic sampling model to circumvent reliance on various peripherals while ensuring unbiased output via a linear feedback shift register (LFSR)-based post-processing method. We implement this random number generator in SoC FPGA GNU/Linux using minimal FPGA resources and only one Linux task for sampling. NDSTRNG achieved a throughput exceeding 700 Kbps. Moreover, the entropy source of the generator is evaluated using NIST SP 800-90B, while the quality of the generated random numbers is assessed through ENT, NIST SP 800-22, and DIEHARDER. The results confirm that NDSTRNG meets the stringent criteria for both high-quality and high-speed random number generation, making it suitable for deployment in communication, defense, and medical domains where reliable RNGs are indispensable.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2024.3365955</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Central Processing Unit ; Data encryption ; Embedded systems ; Entropy ; Field programmable gate arrays ; Generators ; Hardware ; inherent non-determinism ; Jitter ; latency jitter ; Linear feedback shift registers ; Linux ; Numerical analysis ; Random number generator ; Random numbers ; Robustness (mathematics) ; Sampling ; SoC FPGA ; System on chip ; Throughput</subject><ispartof>IEEE transactions on computers, 2024-05, Vol.73 (5), p.1313-1326</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-6d12910e21ac6998d430c2b3fb91cd9b789364c0a64068d1f980fcd11eef6e733</cites><orcidid>0000-0002-6038-7249 ; 0000-0003-4894-5540 ; 0000-0002-2618-0834 ; 0000-0003-0555-9199 ; 0000-0001-8054-5446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10436529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Yucong</creatorcontrib><creatorcontrib>Tian, Yanshan</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Martinez Castro, Diego</creatorcontrib><creatorcontrib>Guo, Deke</creatorcontrib><creatorcontrib>Zhou, Qingguo</creatorcontrib><title>NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA Systems</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Random number generation is essential for applications in simulation, numerical analysis, and data encryption. The ubiquitous presence of system-on-chip (SoC) field-programmable gate array (FPGA) embedded devices in critical sectors necessitates robust random number generators (RNGs) that operate within these specialized environments. Traditional RNGs in GNU/Linux systems derive entropy from peripheral hardware events, which are scarce in SoC FPGA platforms lacking standard PC peripherals. Addressing this challenge, this paper proposes a novel random number generator named NDSTRNG that leverages the unique hardware structure of the SoC FPGA and the inherent randomness of GNU/Linux. The proposed generator employs a non-deterministic sampling model to circumvent reliance on various peripherals while ensuring unbiased output via a linear feedback shift register (LFSR)-based post-processing method. We implement this random number generator in SoC FPGA GNU/Linux using minimal FPGA resources and only one Linux task for sampling. NDSTRNG achieved a throughput exceeding 700 Kbps. Moreover, the entropy source of the generator is evaluated using NIST SP 800-90B, while the quality of the generated random numbers is assessed through ENT, NIST SP 800-22, and DIEHARDER. The results confirm that NDSTRNG meets the stringent criteria for both high-quality and high-speed random number generation, making it suitable for deployment in communication, defense, and medical domains where reliable RNGs are indispensable.</description><subject>Central Processing Unit</subject><subject>Data encryption</subject><subject>Embedded systems</subject><subject>Entropy</subject><subject>Field programmable gate arrays</subject><subject>Generators</subject><subject>Hardware</subject><subject>inherent non-determinism</subject><subject>Jitter</subject><subject>latency jitter</subject><subject>Linear feedback shift registers</subject><subject>Linux</subject><subject>Numerical analysis</subject><subject>Random number generator</subject><subject>Random numbers</subject><subject>Robustness (mathematics)</subject><subject>Sampling</subject><subject>SoC FPGA</subject><subject>System on chip</subject><subject>Throughput</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Pg0AURSdGE2t17cbFJK5p33wwMO6U2mrSoCm4cUMGeBiaAnUGFv330rQLV29xz70vOYTcM5gxBnqeRjMOXM6EUL72_QsyYb4feFr76pJMAFjoaSHhmtw4twUAxUFPyHe8SNJNvHqicdd6C-zRNnVbu74uaGKa_a5uf7wX47CkqR2Qbkxbdg2NhyZHS1fYojV9Z2nX0qSL6PJz9UyTg-uxcbfkqjI7h3fnOyVfy9c0evPWH6v36HntFVzK3lMl45oBcmYKpXVYSgEFz0WVa1aUOg9CLZQswCgJKixZpUOoipIxxEphIMSUPJ5297b7HdD12bYbbDu-zAQInwchC9lIzU9UYTvnLFbZ3taNsYeMQXYUmKVRdhSYnQWOjYdTo0bEf7Qcc67FH58Uago</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Chen, Yucong</creator><creator>Tian, Yanshan</creator><creator>Zhou, Rui</creator><creator>Martinez Castro, Diego</creator><creator>Guo, Deke</creator><creator>Zhou, Qingguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6038-7249</orcidid><orcidid>https://orcid.org/0000-0003-4894-5540</orcidid><orcidid>https://orcid.org/0000-0002-2618-0834</orcidid><orcidid>https://orcid.org/0000-0003-0555-9199</orcidid><orcidid>https://orcid.org/0000-0001-8054-5446</orcidid></search><sort><creationdate>20240501</creationdate><title>NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA Systems</title><author>Chen, Yucong ; Tian, Yanshan ; Zhou, Rui ; Martinez Castro, Diego ; Guo, Deke ; Zhou, Qingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-6d12910e21ac6998d430c2b3fb91cd9b789364c0a64068d1f980fcd11eef6e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Central Processing Unit</topic><topic>Data encryption</topic><topic>Embedded systems</topic><topic>Entropy</topic><topic>Field programmable gate arrays</topic><topic>Generators</topic><topic>Hardware</topic><topic>inherent non-determinism</topic><topic>Jitter</topic><topic>latency jitter</topic><topic>Linear feedback shift registers</topic><topic>Linux</topic><topic>Numerical analysis</topic><topic>Random number generator</topic><topic>Random numbers</topic><topic>Robustness (mathematics)</topic><topic>Sampling</topic><topic>SoC FPGA</topic><topic>System on chip</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yucong</creatorcontrib><creatorcontrib>Tian, Yanshan</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Martinez Castro, Diego</creatorcontrib><creatorcontrib>Guo, Deke</creatorcontrib><creatorcontrib>Zhou, Qingguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yucong</au><au>Tian, Yanshan</au><au>Zhou, Rui</au><au>Martinez Castro, Diego</au><au>Guo, Deke</au><au>Zhou, Qingguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA Systems</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>73</volume><issue>5</issue><spage>1313</spage><epage>1326</epage><pages>1313-1326</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Random number generation is essential for applications in simulation, numerical analysis, and data encryption. The ubiquitous presence of system-on-chip (SoC) field-programmable gate array (FPGA) embedded devices in critical sectors necessitates robust random number generators (RNGs) that operate within these specialized environments. Traditional RNGs in GNU/Linux systems derive entropy from peripheral hardware events, which are scarce in SoC FPGA platforms lacking standard PC peripherals. Addressing this challenge, this paper proposes a novel random number generator named NDSTRNG that leverages the unique hardware structure of the SoC FPGA and the inherent randomness of GNU/Linux. The proposed generator employs a non-deterministic sampling model to circumvent reliance on various peripherals while ensuring unbiased output via a linear feedback shift register (LFSR)-based post-processing method. We implement this random number generator in SoC FPGA GNU/Linux using minimal FPGA resources and only one Linux task for sampling. NDSTRNG achieved a throughput exceeding 700 Kbps. Moreover, the entropy source of the generator is evaluated using NIST SP 800-90B, while the quality of the generated random numbers is assessed through ENT, NIST SP 800-22, and DIEHARDER. The results confirm that NDSTRNG meets the stringent criteria for both high-quality and high-speed random number generation, making it suitable for deployment in communication, defense, and medical domains where reliable RNGs are indispensable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2024.3365955</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6038-7249</orcidid><orcidid>https://orcid.org/0000-0003-4894-5540</orcidid><orcidid>https://orcid.org/0000-0002-2618-0834</orcidid><orcidid>https://orcid.org/0000-0003-0555-9199</orcidid><orcidid>https://orcid.org/0000-0001-8054-5446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2024-05, Vol.73 (5), p.1313-1326
issn 0018-9340
1557-9956
language eng
recordid cdi_crossref_primary_10_1109_TC_2024_3365955
source IEEE Electronic Library (IEL) Journals
subjects Central Processing Unit
Data encryption
Embedded systems
Entropy
Field programmable gate arrays
Generators
Hardware
inherent non-determinism
Jitter
latency jitter
Linear feedback shift registers
Linux
Numerical analysis
Random number generator
Random numbers
Robustness (mathematics)
Sampling
SoC FPGA
System on chip
Throughput
title NDSTRNG: Non-Deterministic Sampling-Based True Random Number Generator on SoC FPGA Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NDSTRNG:%20Non-Deterministic%20Sampling-Based%20True%20Random%20Number%20Generator%20on%20SoC%20FPGA%20Systems&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Chen,%20Yucong&rft.date=2024-05-01&rft.volume=73&rft.issue=5&rft.spage=1313&rft.epage=1326&rft.pages=1313-1326&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2024.3365955&rft_dat=%3Cproquest_cross%3E3035278181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-6d12910e21ac6998d430c2b3fb91cd9b789364c0a64068d1f980fcd11eef6e733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3035278181&rft_id=info:pmid/&rft_ieee_id=10436529&rfr_iscdi=true