Loading…
Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method
This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed in...
Saved in:
Published in: | IEEE transactions on energy conversion 2024-03, Vol.39 (1), p.1-15 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on energy conversion |
container_volume | 39 |
creator | Oboreh-Snapps, Oroghene She, Buxin Fahad, Shah Chen, Haotian Kimball, Jonathan Li, Fangxing Cui, Hantao Bo, Rui |
description | This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods. |
doi_str_mv | 10.1109/TEC.2023.3309955 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2023_3309955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10234723</ieee_id><sourcerecordid>2930957772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKt3Dx4CnrdOspsmOUqtVago2HpddrNTG1mTmqRI_70p7cHLvMv73sBHyDWDEWOg7xbTyYgDL0dlCVoLcUIGTAhVAAh9SgaglCiUHutzchHjFwCrBGcD0n7YkLZNT993zqyDd34b6Qwdhib5QCfepeB7uozWfdLFr3X0Aftmh11O3OSTMHxbZ2Oyhr753podnYWms-gSfcG09t0lOVs1fcSrYw7J8nG6mDwV89fZ8-R-XhiueSqqiimpFB9L6FoQTEElTSOrVamRyRJRoF61nazAAGoEMwajKtlmrBGibcshuT3sboL_2WJM9ZffBpdf1lxnKUJKyXMLDi0TfIwBV_Um2O8m7GoG9d5knU3We5P10WRGbg6IRcR_dV5WebD8A6o9b2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930957772</pqid></control><display><type>article</type><title>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Oboreh-Snapps, Oroghene ; She, Buxin ; Fahad, Shah ; Chen, Haotian ; Kimball, Jonathan ; Li, Fangxing ; Cui, Hantao ; Bo, Rui</creator><creatorcontrib>Oboreh-Snapps, Oroghene ; She, Buxin ; Fahad, Shah ; Chen, Haotian ; Kimball, Jonathan ; Li, Fangxing ; Cui, Hantao ; Bo, Rui</creatorcontrib><description>This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2023.3309955</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Damping ; Deep reinforcement learning ; Frequency deviation ; Frequency response ; Inverters ; Mathematical models ; MATLAB/SIMULINK ; microgrid ; Microgrids ; Moments of inertia ; Parameters ; Policies ; Power system stability ; RTDS ; Settling ; Synchronous machines ; virtual damping ; virtual inertia ; virtual synchronous generator</subject><ispartof>IEEE transactions on energy conversion, 2024-03, Vol.39 (1), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</citedby><cites>FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</cites><orcidid>0000-0001-9108-1093 ; 0000-0002-2624-560X ; 0000-0003-1060-7618 ; 0000-0002-4259-5925 ; 0000-0002-1017-2952 ; 0000-0002-4061-2007 ; 0009-0000-2644-8354 ; 0009-0009-7454-3562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10234723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Oboreh-Snapps, Oroghene</creatorcontrib><creatorcontrib>She, Buxin</creatorcontrib><creatorcontrib>Fahad, Shah</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Kimball, Jonathan</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><creatorcontrib>Cui, Hantao</creatorcontrib><creatorcontrib>Bo, Rui</creatorcontrib><title>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Damping</subject><subject>Deep reinforcement learning</subject><subject>Frequency deviation</subject><subject>Frequency response</subject><subject>Inverters</subject><subject>Mathematical models</subject><subject>MATLAB/SIMULINK</subject><subject>microgrid</subject><subject>Microgrids</subject><subject>Moments of inertia</subject><subject>Parameters</subject><subject>Policies</subject><subject>Power system stability</subject><subject>RTDS</subject><subject>Settling</subject><subject>Synchronous machines</subject><subject>virtual damping</subject><subject>virtual inertia</subject><subject>virtual synchronous generator</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKt3Dx4CnrdOspsmOUqtVago2HpddrNTG1mTmqRI_70p7cHLvMv73sBHyDWDEWOg7xbTyYgDL0dlCVoLcUIGTAhVAAh9SgaglCiUHutzchHjFwCrBGcD0n7YkLZNT993zqyDd34b6Qwdhib5QCfepeB7uozWfdLFr3X0Aftmh11O3OSTMHxbZ2Oyhr753podnYWms-gSfcG09t0lOVs1fcSrYw7J8nG6mDwV89fZ8-R-XhiueSqqiimpFB9L6FoQTEElTSOrVamRyRJRoF61nazAAGoEMwajKtlmrBGibcshuT3sboL_2WJM9ZffBpdf1lxnKUJKyXMLDi0TfIwBV_Um2O8m7GoG9d5knU3We5P10WRGbg6IRcR_dV5WebD8A6o9b2A</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Oboreh-Snapps, Oroghene</creator><creator>She, Buxin</creator><creator>Fahad, Shah</creator><creator>Chen, Haotian</creator><creator>Kimball, Jonathan</creator><creator>Li, Fangxing</creator><creator>Cui, Hantao</creator><creator>Bo, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9108-1093</orcidid><orcidid>https://orcid.org/0000-0002-2624-560X</orcidid><orcidid>https://orcid.org/0000-0003-1060-7618</orcidid><orcidid>https://orcid.org/0000-0002-4259-5925</orcidid><orcidid>https://orcid.org/0000-0002-1017-2952</orcidid><orcidid>https://orcid.org/0000-0002-4061-2007</orcidid><orcidid>https://orcid.org/0009-0000-2644-8354</orcidid><orcidid>https://orcid.org/0009-0009-7454-3562</orcidid></search><sort><creationdate>20240301</creationdate><title>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</title><author>Oboreh-Snapps, Oroghene ; She, Buxin ; Fahad, Shah ; Chen, Haotian ; Kimball, Jonathan ; Li, Fangxing ; Cui, Hantao ; Bo, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Damping</topic><topic>Deep reinforcement learning</topic><topic>Frequency deviation</topic><topic>Frequency response</topic><topic>Inverters</topic><topic>Mathematical models</topic><topic>MATLAB/SIMULINK</topic><topic>microgrid</topic><topic>Microgrids</topic><topic>Moments of inertia</topic><topic>Parameters</topic><topic>Policies</topic><topic>Power system stability</topic><topic>RTDS</topic><topic>Settling</topic><topic>Synchronous machines</topic><topic>virtual damping</topic><topic>virtual inertia</topic><topic>virtual synchronous generator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oboreh-Snapps, Oroghene</creatorcontrib><creatorcontrib>She, Buxin</creatorcontrib><creatorcontrib>Fahad, Shah</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Kimball, Jonathan</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><creatorcontrib>Cui, Hantao</creatorcontrib><creatorcontrib>Bo, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oboreh-Snapps, Oroghene</au><au>She, Buxin</au><au>Fahad, Shah</au><au>Chen, Haotian</au><au>Kimball, Jonathan</au><au>Li, Fangxing</au><au>Cui, Hantao</au><au>Bo, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2023.3309955</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9108-1093</orcidid><orcidid>https://orcid.org/0000-0002-2624-560X</orcidid><orcidid>https://orcid.org/0000-0003-1060-7618</orcidid><orcidid>https://orcid.org/0000-0002-4259-5925</orcidid><orcidid>https://orcid.org/0000-0002-1017-2952</orcidid><orcidid>https://orcid.org/0000-0002-4061-2007</orcidid><orcidid>https://orcid.org/0009-0000-2644-8354</orcidid><orcidid>https://orcid.org/0009-0009-7454-3562</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2024-03, Vol.39 (1), p.1-15 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEC_2023_3309955 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Algorithms Damping Deep reinforcement learning Frequency deviation Frequency response Inverters Mathematical models MATLAB/SIMULINK microgrid Microgrids Moments of inertia Parameters Policies Power system stability RTDS Settling Synchronous machines virtual damping virtual inertia virtual synchronous generator |
title | Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Synchronous%20Generator%20Control%20Using%20Twin%20Delayed%20Deep%20Deterministic%20Policy%20Gradient%20Method&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Oboreh-Snapps,%20Oroghene&rft.date=2024-03-01&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2023.3309955&rft_dat=%3Cproquest_cross%3E2930957772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930957772&rft_id=info:pmid/&rft_ieee_id=10234723&rfr_iscdi=true |