Loading…

Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method

This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion 2024-03, Vol.39 (1), p.1-15
Main Authors: Oboreh-Snapps, Oroghene, She, Buxin, Fahad, Shah, Chen, Haotian, Kimball, Jonathan, Li, Fangxing, Cui, Hantao, Bo, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3
cites cdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3
container_end_page 15
container_issue 1
container_start_page 1
container_title IEEE transactions on energy conversion
container_volume 39
creator Oboreh-Snapps, Oroghene
She, Buxin
Fahad, Shah
Chen, Haotian
Kimball, Jonathan
Li, Fangxing
Cui, Hantao
Bo, Rui
description This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.
doi_str_mv 10.1109/TEC.2023.3309955
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEC_2023_3309955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10234723</ieee_id><sourcerecordid>2930957772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKt3Dx4CnrdOspsmOUqtVago2HpddrNTG1mTmqRI_70p7cHLvMv73sBHyDWDEWOg7xbTyYgDL0dlCVoLcUIGTAhVAAh9SgaglCiUHutzchHjFwCrBGcD0n7YkLZNT993zqyDd34b6Qwdhib5QCfepeB7uozWfdLFr3X0Aftmh11O3OSTMHxbZ2Oyhr753podnYWms-gSfcG09t0lOVs1fcSrYw7J8nG6mDwV89fZ8-R-XhiueSqqiimpFB9L6FoQTEElTSOrVamRyRJRoF61nazAAGoEMwajKtlmrBGibcshuT3sboL_2WJM9ZffBpdf1lxnKUJKyXMLDi0TfIwBV_Um2O8m7GoG9d5knU3We5P10WRGbg6IRcR_dV5WebD8A6o9b2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930957772</pqid></control><display><type>article</type><title>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Oboreh-Snapps, Oroghene ; She, Buxin ; Fahad, Shah ; Chen, Haotian ; Kimball, Jonathan ; Li, Fangxing ; Cui, Hantao ; Bo, Rui</creator><creatorcontrib>Oboreh-Snapps, Oroghene ; She, Buxin ; Fahad, Shah ; Chen, Haotian ; Kimball, Jonathan ; Li, Fangxing ; Cui, Hantao ; Bo, Rui</creatorcontrib><description>This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2023.3309955</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Damping ; Deep reinforcement learning ; Frequency deviation ; Frequency response ; Inverters ; Mathematical models ; MATLAB/SIMULINK ; microgrid ; Microgrids ; Moments of inertia ; Parameters ; Policies ; Power system stability ; RTDS ; Settling ; Synchronous machines ; virtual damping ; virtual inertia ; virtual synchronous generator</subject><ispartof>IEEE transactions on energy conversion, 2024-03, Vol.39 (1), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</citedby><cites>FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</cites><orcidid>0000-0001-9108-1093 ; 0000-0002-2624-560X ; 0000-0003-1060-7618 ; 0000-0002-4259-5925 ; 0000-0002-1017-2952 ; 0000-0002-4061-2007 ; 0009-0000-2644-8354 ; 0009-0009-7454-3562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10234723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Oboreh-Snapps, Oroghene</creatorcontrib><creatorcontrib>She, Buxin</creatorcontrib><creatorcontrib>Fahad, Shah</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Kimball, Jonathan</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><creatorcontrib>Cui, Hantao</creatorcontrib><creatorcontrib>Bo, Rui</creatorcontrib><title>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Damping</subject><subject>Deep reinforcement learning</subject><subject>Frequency deviation</subject><subject>Frequency response</subject><subject>Inverters</subject><subject>Mathematical models</subject><subject>MATLAB/SIMULINK</subject><subject>microgrid</subject><subject>Microgrids</subject><subject>Moments of inertia</subject><subject>Parameters</subject><subject>Policies</subject><subject>Power system stability</subject><subject>RTDS</subject><subject>Settling</subject><subject>Synchronous machines</subject><subject>virtual damping</subject><subject>virtual inertia</subject><subject>virtual synchronous generator</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKt3Dx4CnrdOspsmOUqtVago2HpddrNTG1mTmqRI_70p7cHLvMv73sBHyDWDEWOg7xbTyYgDL0dlCVoLcUIGTAhVAAh9SgaglCiUHutzchHjFwCrBGcD0n7YkLZNT993zqyDd34b6Qwdhib5QCfepeB7uozWfdLFr3X0Aftmh11O3OSTMHxbZ2Oyhr753podnYWms-gSfcG09t0lOVs1fcSrYw7J8nG6mDwV89fZ8-R-XhiueSqqiimpFB9L6FoQTEElTSOrVamRyRJRoF61nazAAGoEMwajKtlmrBGibcshuT3sboL_2WJM9ZffBpdf1lxnKUJKyXMLDi0TfIwBV_Um2O8m7GoG9d5knU3We5P10WRGbg6IRcR_dV5WebD8A6o9b2A</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Oboreh-Snapps, Oroghene</creator><creator>She, Buxin</creator><creator>Fahad, Shah</creator><creator>Chen, Haotian</creator><creator>Kimball, Jonathan</creator><creator>Li, Fangxing</creator><creator>Cui, Hantao</creator><creator>Bo, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9108-1093</orcidid><orcidid>https://orcid.org/0000-0002-2624-560X</orcidid><orcidid>https://orcid.org/0000-0003-1060-7618</orcidid><orcidid>https://orcid.org/0000-0002-4259-5925</orcidid><orcidid>https://orcid.org/0000-0002-1017-2952</orcidid><orcidid>https://orcid.org/0000-0002-4061-2007</orcidid><orcidid>https://orcid.org/0009-0000-2644-8354</orcidid><orcidid>https://orcid.org/0009-0009-7454-3562</orcidid></search><sort><creationdate>20240301</creationdate><title>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</title><author>Oboreh-Snapps, Oroghene ; She, Buxin ; Fahad, Shah ; Chen, Haotian ; Kimball, Jonathan ; Li, Fangxing ; Cui, Hantao ; Bo, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Damping</topic><topic>Deep reinforcement learning</topic><topic>Frequency deviation</topic><topic>Frequency response</topic><topic>Inverters</topic><topic>Mathematical models</topic><topic>MATLAB/SIMULINK</topic><topic>microgrid</topic><topic>Microgrids</topic><topic>Moments of inertia</topic><topic>Parameters</topic><topic>Policies</topic><topic>Power system stability</topic><topic>RTDS</topic><topic>Settling</topic><topic>Synchronous machines</topic><topic>virtual damping</topic><topic>virtual inertia</topic><topic>virtual synchronous generator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oboreh-Snapps, Oroghene</creatorcontrib><creatorcontrib>She, Buxin</creatorcontrib><creatorcontrib>Fahad, Shah</creatorcontrib><creatorcontrib>Chen, Haotian</creatorcontrib><creatorcontrib>Kimball, Jonathan</creatorcontrib><creatorcontrib>Li, Fangxing</creatorcontrib><creatorcontrib>Cui, Hantao</creatorcontrib><creatorcontrib>Bo, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oboreh-Snapps, Oroghene</au><au>She, Buxin</au><au>Fahad, Shah</au><au>Chen, Haotian</au><au>Kimball, Jonathan</au><au>Li, Fangxing</au><au>Cui, Hantao</au><au>Bo, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper presents a data-driven approach that adaptively tunes the parameters of a virtual synchronous generator to achieve optimal frequency response against disturbances. In the proposed approach, the control variables, namely, the virtual moment of inertia and damping factor, are transformed into actions of a reinforcement learning agent. Different from the state-of-the-art methods, the proposed study introduces the settling time parameter as one of the observations in addition to the frequency and rate of change of frequency (RoCoF). In the reward function, preset indices are considered to simultaneously ensure bounded frequency deviation, low RoCoF, fast response, and quick settling time. To maximize the reward, this study employs the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. TD3 has an exceptional capacity for learning optimal policies and is free of overestimation bias, which may lead to suboptimal policies. Finally, numerical validation in MATLAB/Simulink and real-time simulation using RTDS confirm the superiority of the proposed method over other adaptive tuning methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2023.3309955</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9108-1093</orcidid><orcidid>https://orcid.org/0000-0002-2624-560X</orcidid><orcidid>https://orcid.org/0000-0003-1060-7618</orcidid><orcidid>https://orcid.org/0000-0002-4259-5925</orcidid><orcidid>https://orcid.org/0000-0002-1017-2952</orcidid><orcidid>https://orcid.org/0000-0002-4061-2007</orcidid><orcidid>https://orcid.org/0009-0000-2644-8354</orcidid><orcidid>https://orcid.org/0009-0009-7454-3562</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2024-03, Vol.39 (1), p.1-15
issn 0885-8969
1558-0059
language eng
recordid cdi_crossref_primary_10_1109_TEC_2023_3309955
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Algorithms
Damping
Deep reinforcement learning
Frequency deviation
Frequency response
Inverters
Mathematical models
MATLAB/SIMULINK
microgrid
Microgrids
Moments of inertia
Parameters
Policies
Power system stability
RTDS
Settling
Synchronous machines
virtual damping
virtual inertia
virtual synchronous generator
title Virtual Synchronous Generator Control Using Twin Delayed Deep Deterministic Policy Gradient Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Synchronous%20Generator%20Control%20Using%20Twin%20Delayed%20Deep%20Deterministic%20Policy%20Gradient%20Method&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Oboreh-Snapps,%20Oroghene&rft.date=2024-03-01&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2023.3309955&rft_dat=%3Cproquest_cross%3E2930957772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-44187882670db0518047ca74f39e173ee5e9fbd740c0e9e0c60c847b418a55bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930957772&rft_id=info:pmid/&rft_ieee_id=10234723&rfr_iscdi=true