Loading…

P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells

Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2006-08, Vol.53 (8), p.1893-1901
Main Authors: Cotter, J.E., Guo, J.H., Cousins, P.J., Abbott, M.D., Chen, F.W., Fisher, K.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813
cites cdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813
container_end_page 1901
container_issue 8
container_start_page 1893
container_title IEEE transactions on electron devices
container_volume 53
creator Cotter, J.E.
Guo, J.H.
Cousins, P.J.
Abbott, M.D.
Chen, F.W.
Fisher, K.C.
description Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells
doi_str_mv 10.1109/TED.2006.878026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2006_878026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1661892</ieee_id><sourcerecordid>2340364731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</originalsourceid><addsrcrecordid>eNpdkMtLAzEQxoMoWKtnD14WQTxtm8fm5U3WaoWChVY9hjTNasq-TLqH_vembLHgaZiZ3zd88wFwjeAIISjHy8nTCEPIRoILiNkJGCBKeSpZxk7BAEIkUkkEOQcXIWxiy7IMD4Cep8tda5MP60MXkrrvFq50pqmTT13E-UMy901ordmGpGh8MnVf3-mkKJxxtja7JG-qynrjdPknXDSl9kluyzJcgrNCl8FeHeoQvD9Plvk0nb29vOaPs9RkiG1Two1lkiLIOV1LY4SwBsMis4RTI-VKCKbXFHLMCFlrhLKV5IxiKTFlGgtEhuC-v9v65qezYasqF0x0oGvbdEEJEd_HgpNI3v4jN03n62hOCUYRlRztoXEPmfh78LZQrXeV9juFoNoHrmLgah-46gOPirvDWR2MLguva-PCUcalFIiLyN30nLPWHteMISEx-QWXKIbH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865159713</pqid></control><display><type>article</type><title>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cotter, J.E. ; Guo, J.H. ; Cousins, P.J. ; Abbott, M.D. ; Chen, F.W. ; Fisher, K.C.</creator><creatorcontrib>Cotter, J.E. ; Guo, J.H. ; Cousins, P.J. ; Abbott, M.D. ; Chen, F.W. ; Fisher, K.C.</creatorcontrib><description>Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2006.878026</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Crystal defects ; Crystallography ; Dislocations ; Efficiency ; Electronics ; Energy ; Exact sciences and technology ; Industrial production ; Natural energy ; Optoelectronic devices ; Photovoltaic cells ; Photovoltaic conversion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Silicon wafers ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Terminals ; Wafers</subject><ispartof>IEEE transactions on electron devices, 2006-08, Vol.53 (8), p.1893-1901</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</citedby><cites>FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1661892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17998178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cotter, J.E.</creatorcontrib><creatorcontrib>Guo, J.H.</creatorcontrib><creatorcontrib>Cousins, P.J.</creatorcontrib><creatorcontrib>Abbott, M.D.</creatorcontrib><creatorcontrib>Chen, F.W.</creatorcontrib><creatorcontrib>Fisher, K.C.</creatorcontrib><title>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells</description><subject>Applied sciences</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Dislocations</subject><subject>Efficiency</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Industrial production</subject><subject>Natural energy</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Terminals</subject><subject>Wafers</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQxoMoWKtnD14WQTxtm8fm5U3WaoWChVY9hjTNasq-TLqH_vembLHgaZiZ3zd88wFwjeAIISjHy8nTCEPIRoILiNkJGCBKeSpZxk7BAEIkUkkEOQcXIWxiy7IMD4Cep8tda5MP60MXkrrvFq50pqmTT13E-UMy901ordmGpGh8MnVf3-mkKJxxtja7JG-qynrjdPknXDSl9kluyzJcgrNCl8FeHeoQvD9Plvk0nb29vOaPs9RkiG1Two1lkiLIOV1LY4SwBsMis4RTI-VKCKbXFHLMCFlrhLKV5IxiKTFlGgtEhuC-v9v65qezYasqF0x0oGvbdEEJEd_HgpNI3v4jN03n62hOCUYRlRztoXEPmfh78LZQrXeV9juFoNoHrmLgah-46gOPirvDWR2MLguva-PCUcalFIiLyN30nLPWHteMISEx-QWXKIbH</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Cotter, J.E.</creator><creator>Guo, J.H.</creator><creator>Cousins, P.J.</creator><creator>Abbott, M.D.</creator><creator>Chen, F.W.</creator><creator>Fisher, K.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</title><author>Cotter, J.E. ; Guo, J.H. ; Cousins, P.J. ; Abbott, M.D. ; Chen, F.W. ; Fisher, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Dislocations</topic><topic>Efficiency</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Industrial production</topic><topic>Natural energy</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Terminals</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cotter, J.E.</creatorcontrib><creatorcontrib>Guo, J.H.</creatorcontrib><creatorcontrib>Cousins, P.J.</creatorcontrib><creatorcontrib>Abbott, M.D.</creatorcontrib><creatorcontrib>Chen, F.W.</creatorcontrib><creatorcontrib>Fisher, K.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cotter, J.E.</au><au>Guo, J.H.</au><au>Cousins, P.J.</au><au>Abbott, M.D.</au><au>Chen, F.W.</au><au>Fisher, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>53</volume><issue>8</issue><spage>1893</spage><epage>1901</epage><pages>1893-1901</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2006.878026</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2006-08, Vol.53 (8), p.1893-1901
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2006_878026
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Crystal defects
Crystallography
Dislocations
Efficiency
Electronics
Energy
Exact sciences and technology
Industrial production
Natural energy
Optoelectronic devices
Photovoltaic cells
Photovoltaic conversion
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Silicon wafers
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Terminals
Wafers
title P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-Type%20Versus%20n-Type%20Silicon%20Wafers:%20Prospects%20for%20High-Efficiency%20Commercial%20Silicon%20Solar%20Cells&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Cotter,%20J.E.&rft.date=2006-08-01&rft.volume=53&rft.issue=8&rft.spage=1893&rft.epage=1901&rft.pages=1893-1901&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2006.878026&rft_dat=%3Cproquest_cross%3E2340364731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865159713&rft_id=info:pmid/&rft_ieee_id=1661892&rfr_iscdi=true