Loading…
P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells
Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between...
Saved in:
Published in: | IEEE transactions on electron devices 2006-08, Vol.53 (8), p.1893-1901 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813 |
container_end_page | 1901 |
container_issue | 8 |
container_start_page | 1893 |
container_title | IEEE transactions on electron devices |
container_volume | 53 |
creator | Cotter, J.E. Guo, J.H. Cousins, P.J. Abbott, M.D. Chen, F.W. Fisher, K.C. |
description | Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells |
doi_str_mv | 10.1109/TED.2006.878026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2006_878026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1661892</ieee_id><sourcerecordid>2340364731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</originalsourceid><addsrcrecordid>eNpdkMtLAzEQxoMoWKtnD14WQTxtm8fm5U3WaoWChVY9hjTNasq-TLqH_vembLHgaZiZ3zd88wFwjeAIISjHy8nTCEPIRoILiNkJGCBKeSpZxk7BAEIkUkkEOQcXIWxiy7IMD4Cep8tda5MP60MXkrrvFq50pqmTT13E-UMy901ordmGpGh8MnVf3-mkKJxxtja7JG-qynrjdPknXDSl9kluyzJcgrNCl8FeHeoQvD9Plvk0nb29vOaPs9RkiG1Two1lkiLIOV1LY4SwBsMis4RTI-VKCKbXFHLMCFlrhLKV5IxiKTFlGgtEhuC-v9v65qezYasqF0x0oGvbdEEJEd_HgpNI3v4jN03n62hOCUYRlRztoXEPmfh78LZQrXeV9juFoNoHrmLgah-46gOPirvDWR2MLguva-PCUcalFIiLyN30nLPWHteMISEx-QWXKIbH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865159713</pqid></control><display><type>article</type><title>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cotter, J.E. ; Guo, J.H. ; Cousins, P.J. ; Abbott, M.D. ; Chen, F.W. ; Fisher, K.C.</creator><creatorcontrib>Cotter, J.E. ; Guo, J.H. ; Cousins, P.J. ; Abbott, M.D. ; Chen, F.W. ; Fisher, K.C.</creatorcontrib><description>Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2006.878026</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Crystal defects ; Crystallography ; Dislocations ; Efficiency ; Electronics ; Energy ; Exact sciences and technology ; Industrial production ; Natural energy ; Optoelectronic devices ; Photovoltaic cells ; Photovoltaic conversion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Silicon wafers ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Terminals ; Wafers</subject><ispartof>IEEE transactions on electron devices, 2006-08, Vol.53 (8), p.1893-1901</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</citedby><cites>FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1661892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17998178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cotter, J.E.</creatorcontrib><creatorcontrib>Guo, J.H.</creatorcontrib><creatorcontrib>Cousins, P.J.</creatorcontrib><creatorcontrib>Abbott, M.D.</creatorcontrib><creatorcontrib>Chen, F.W.</creatorcontrib><creatorcontrib>Fisher, K.C.</creatorcontrib><title>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells</description><subject>Applied sciences</subject><subject>Crystal defects</subject><subject>Crystallography</subject><subject>Dislocations</subject><subject>Efficiency</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Industrial production</subject><subject>Natural energy</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Terminals</subject><subject>Wafers</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkMtLAzEQxoMoWKtnD14WQTxtm8fm5U3WaoWChVY9hjTNasq-TLqH_vembLHgaZiZ3zd88wFwjeAIISjHy8nTCEPIRoILiNkJGCBKeSpZxk7BAEIkUkkEOQcXIWxiy7IMD4Cep8tda5MP60MXkrrvFq50pqmTT13E-UMy901ordmGpGh8MnVf3-mkKJxxtja7JG-qynrjdPknXDSl9kluyzJcgrNCl8FeHeoQvD9Plvk0nb29vOaPs9RkiG1Two1lkiLIOV1LY4SwBsMis4RTI-VKCKbXFHLMCFlrhLKV5IxiKTFlGgtEhuC-v9v65qezYasqF0x0oGvbdEEJEd_HgpNI3v4jN03n62hOCUYRlRztoXEPmfh78LZQrXeV9juFoNoHrmLgah-46gOPirvDWR2MLguva-PCUcalFIiLyN30nLPWHteMISEx-QWXKIbH</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Cotter, J.E.</creator><creator>Guo, J.H.</creator><creator>Cousins, P.J.</creator><creator>Abbott, M.D.</creator><creator>Chen, F.W.</creator><creator>Fisher, K.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060801</creationdate><title>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</title><author>Cotter, J.E. ; Guo, J.H. ; Cousins, P.J. ; Abbott, M.D. ; Chen, F.W. ; Fisher, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Crystal defects</topic><topic>Crystallography</topic><topic>Dislocations</topic><topic>Efficiency</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Industrial production</topic><topic>Natural energy</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Terminals</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cotter, J.E.</creatorcontrib><creatorcontrib>Guo, J.H.</creatorcontrib><creatorcontrib>Cousins, P.J.</creatorcontrib><creatorcontrib>Abbott, M.D.</creatorcontrib><creatorcontrib>Chen, F.W.</creatorcontrib><creatorcontrib>Fisher, K.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cotter, J.E.</au><au>Guo, J.H.</au><au>Cousins, P.J.</au><au>Abbott, M.D.</au><au>Chen, F.W.</au><au>Fisher, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2006-08-01</date><risdate>2006</risdate><volume>53</volume><issue>8</issue><spage>1893</spage><epage>1901</epage><pages>1893-1901</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2006.878026</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2006-08, Vol.53 (8), p.1893-1901 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2006_878026 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Crystal defects Crystallography Dislocations Efficiency Electronics Energy Exact sciences and technology Industrial production Natural energy Optoelectronic devices Photovoltaic cells Photovoltaic conversion Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Silicon wafers Solar cells Solar cells. Photoelectrochemical cells Solar energy Terminals Wafers |
title | P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-Type%20Versus%20n-Type%20Silicon%20Wafers:%20Prospects%20for%20High-Efficiency%20Commercial%20Silicon%20Solar%20Cells&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Cotter,%20J.E.&rft.date=2006-08-01&rft.volume=53&rft.issue=8&rft.spage=1893&rft.epage=1901&rft.pages=1893-1901&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2006.878026&rft_dat=%3Cproquest_cross%3E2340364731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-37ce69510775d9cc88ec20f4e375c99b886ad5072633da114b9765299256a2813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865159713&rft_id=info:pmid/&rft_ieee_id=1661892&rfr_iscdi=true |