Loading…
Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing
We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively...
Saved in:
Published in: | IEEE transactions on electron devices 2007-11, Vol.54 (11), p.2953-2959 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3 |
container_end_page | 2959 |
container_issue | 11 |
container_start_page | 2953 |
container_title | IEEE transactions on electron devices |
container_volume | 54 |
creator | Shima, A. Mine, T. Torii, K. Hiraiwa, A. |
description | We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance. |
doi_str_mv | 10.1109/TED.2007.906972 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2007_906972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4367615</ieee_id><sourcerecordid>880658488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EEiHtmgUbCwm6mtSv8WNZJaEghbZS27Xlca6Ly8Qz2Mmi_x6PUoHEgm78Ot851tVB6D0lC0qJOb9brxaMELUwRBrFXqEZbVvVGCnkazQjhOrGcM3fonelPNarFILN0LhOP1zysIO0x0PAq-xiwstDztNDPd70LrmMv1_fflnfFdw94dUwuqrd5CHEHvA6PcQEkGN6wPdlWq-GtIN-jzeuQMa3Y_wJ-CIlcH1VT9Cb4PoCp8_7HN3X4OXXZnN9-W15sWm8UGbfdFvlOuGMAkqoakE4KTspTCB-q4hsOymZ9jQEH4BzJmXrqs4805oHtfV8js6OuWMefh2g7O0uFg99HQeGQ7GGcMmJVuxFUuv6nxY1eI4-_5fkQohWsAn8-A_4OBxyqvNaLbkmjElaofMj5PNQSoZgxxx3Lj9ZSuxUqa2V2qlSe6y0Oj49x7riXR9ybS6WvzZDTVt9lftw5CIA_JEFl0rSlv8GE-aoKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863802261</pqid></control><display><type>article</type><title>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</title><source>IEEE Xplore (Online service)</source><creator>Shima, A. ; Mine, T. ; Torii, K. ; Hiraiwa, A.</creator><creatorcontrib>Shima, A. ; Mine, T. ; Torii, K. ; Hiraiwa, A.</creatorcontrib><description>We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.906972</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Applied sciences ; CMOS integrated circuits ; Compound structure devices ; Design. Technologies. Operation analysis. Testing ; Devices ; Dopants ; Doping profiles ; Drains ; Electronics ; Exact sciences and technology ; Germanium ; Halos ; Implantation ; Integrated circuits ; Junctions ; laser annealing ; Lasers ; Logic gates ; MOSFETs ; Performance evaluation ; Rapid thermal annealing ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; source/drain (S/D) extensions (SDEs) ; strained silicon ; Transistors ; very-large-scale integration (VLSI)</subject><ispartof>IEEE transactions on electron devices, 2007-11, Vol.54 (11), p.2953-2959</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</citedby><cites>FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4367615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19195109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shima, A.</creatorcontrib><creatorcontrib>Mine, T.</creatorcontrib><creatorcontrib>Torii, K.</creatorcontrib><creatorcontrib>Hiraiwa, A.</creatorcontrib><title>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>CMOS integrated circuits</subject><subject>Compound structure devices</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dopants</subject><subject>Doping profiles</subject><subject>Drains</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Germanium</subject><subject>Halos</subject><subject>Implantation</subject><subject>Integrated circuits</subject><subject>Junctions</subject><subject>laser annealing</subject><subject>Lasers</subject><subject>Logic gates</subject><subject>MOSFETs</subject><subject>Performance evaluation</subject><subject>Rapid thermal annealing</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>source/drain (S/D) extensions (SDEs)</subject><subject>strained silicon</subject><subject>Transistors</subject><subject>very-large-scale integration (VLSI)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhS0EEiHtmgUbCwm6mtSv8WNZJaEghbZS27Xlca6Ly8Qz2Mmi_x6PUoHEgm78Ot851tVB6D0lC0qJOb9brxaMELUwRBrFXqEZbVvVGCnkazQjhOrGcM3fonelPNarFILN0LhOP1zysIO0x0PAq-xiwstDztNDPd70LrmMv1_fflnfFdw94dUwuqrd5CHEHvA6PcQEkGN6wPdlWq-GtIN-jzeuQMa3Y_wJ-CIlcH1VT9Cb4PoCp8_7HN3X4OXXZnN9-W15sWm8UGbfdFvlOuGMAkqoakE4KTspTCB-q4hsOymZ9jQEH4BzJmXrqs4805oHtfV8js6OuWMefh2g7O0uFg99HQeGQ7GGcMmJVuxFUuv6nxY1eI4-_5fkQohWsAn8-A_4OBxyqvNaLbkmjElaofMj5PNQSoZgxxx3Lj9ZSuxUqa2V2qlSe6y0Oj49x7riXR9ybS6WvzZDTVt9lftw5CIA_JEFl0rSlv8GE-aoKg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Shima, A.</creator><creator>Mine, T.</creator><creator>Torii, K.</creator><creator>Hiraiwa, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20071101</creationdate><title>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</title><author>Shima, A. ; Mine, T. ; Torii, K. ; Hiraiwa, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>CMOS integrated circuits</topic><topic>Compound structure devices</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dopants</topic><topic>Doping profiles</topic><topic>Drains</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Germanium</topic><topic>Halos</topic><topic>Implantation</topic><topic>Integrated circuits</topic><topic>Junctions</topic><topic>laser annealing</topic><topic>Lasers</topic><topic>Logic gates</topic><topic>MOSFETs</topic><topic>Performance evaluation</topic><topic>Rapid thermal annealing</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>source/drain (S/D) extensions (SDEs)</topic><topic>strained silicon</topic><topic>Transistors</topic><topic>very-large-scale integration (VLSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shima, A.</creatorcontrib><creatorcontrib>Mine, T.</creatorcontrib><creatorcontrib>Torii, K.</creatorcontrib><creatorcontrib>Hiraiwa, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shima, A.</au><au>Mine, T.</au><au>Torii, K.</au><au>Hiraiwa, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>54</volume><issue>11</issue><spage>2953</spage><epage>2959</epage><pages>2953-2959</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.906972</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2007-11, Vol.54 (11), p.2953-2959 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2007_906972 |
source | IEEE Xplore (Online service) |
subjects | Annealing Applied sciences CMOS integrated circuits Compound structure devices Design. Technologies. Operation analysis. Testing Devices Dopants Doping profiles Drains Electronics Exact sciences and technology Germanium Halos Implantation Integrated circuits Junctions laser annealing Lasers Logic gates MOSFETs Performance evaluation Rapid thermal annealing Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors source/drain (S/D) extensions (SDEs) strained silicon Transistors very-large-scale integration (VLSI) |
title | Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Drain%20Current%20in%20Planar%20MOSFETs%20by%20Dopant%20Profile%20Engineering%20Using%20Nonmelt%20Laser%20Spike%20Annealing&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shima,%20A.&rft.date=2007-11-01&rft.volume=54&rft.issue=11&rft.spage=2953&rft.epage=2959&rft.pages=2953-2959&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.906972&rft_dat=%3Cproquest_cross%3E880658488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863802261&rft_id=info:pmid/&rft_ieee_id=4367615&rfr_iscdi=true |