Loading…

Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing

We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2007-11, Vol.54 (11), p.2953-2959
Main Authors: Shima, A., Mine, T., Torii, K., Hiraiwa, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3
cites cdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3
container_end_page 2959
container_issue 11
container_start_page 2953
container_title IEEE transactions on electron devices
container_volume 54
creator Shima, A.
Mine, T.
Torii, K.
Hiraiwa, A.
description We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.
doi_str_mv 10.1109/TED.2007.906972
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2007_906972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4367615</ieee_id><sourcerecordid>880658488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EEiHtmgUbCwm6mtSv8WNZJaEghbZS27Xlca6Ly8Qz2Mmi_x6PUoHEgm78Ot851tVB6D0lC0qJOb9brxaMELUwRBrFXqEZbVvVGCnkazQjhOrGcM3fonelPNarFILN0LhOP1zysIO0x0PAq-xiwstDztNDPd70LrmMv1_fflnfFdw94dUwuqrd5CHEHvA6PcQEkGN6wPdlWq-GtIN-jzeuQMa3Y_wJ-CIlcH1VT9Cb4PoCp8_7HN3X4OXXZnN9-W15sWm8UGbfdFvlOuGMAkqoakE4KTspTCB-q4hsOymZ9jQEH4BzJmXrqs4805oHtfV8js6OuWMefh2g7O0uFg99HQeGQ7GGcMmJVuxFUuv6nxY1eI4-_5fkQohWsAn8-A_4OBxyqvNaLbkmjElaofMj5PNQSoZgxxx3Lj9ZSuxUqa2V2qlSe6y0Oj49x7riXR9ybS6WvzZDTVt9lftw5CIA_JEFl0rSlv8GE-aoKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863802261</pqid></control><display><type>article</type><title>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</title><source>IEEE Xplore (Online service)</source><creator>Shima, A. ; Mine, T. ; Torii, K. ; Hiraiwa, A.</creator><creatorcontrib>Shima, A. ; Mine, T. ; Torii, K. ; Hiraiwa, A.</creatorcontrib><description>We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.906972</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Applied sciences ; CMOS integrated circuits ; Compound structure devices ; Design. Technologies. Operation analysis. Testing ; Devices ; Dopants ; Doping profiles ; Drains ; Electronics ; Exact sciences and technology ; Germanium ; Halos ; Implantation ; Integrated circuits ; Junctions ; laser annealing ; Lasers ; Logic gates ; MOSFETs ; Performance evaluation ; Rapid thermal annealing ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; source/drain (S/D) extensions (SDEs) ; strained silicon ; Transistors ; very-large-scale integration (VLSI)</subject><ispartof>IEEE transactions on electron devices, 2007-11, Vol.54 (11), p.2953-2959</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</citedby><cites>FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4367615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19195109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shima, A.</creatorcontrib><creatorcontrib>Mine, T.</creatorcontrib><creatorcontrib>Torii, K.</creatorcontrib><creatorcontrib>Hiraiwa, A.</creatorcontrib><title>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>CMOS integrated circuits</subject><subject>Compound structure devices</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dopants</subject><subject>Doping profiles</subject><subject>Drains</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Germanium</subject><subject>Halos</subject><subject>Implantation</subject><subject>Integrated circuits</subject><subject>Junctions</subject><subject>laser annealing</subject><subject>Lasers</subject><subject>Logic gates</subject><subject>MOSFETs</subject><subject>Performance evaluation</subject><subject>Rapid thermal annealing</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>source/drain (S/D) extensions (SDEs)</subject><subject>strained silicon</subject><subject>Transistors</subject><subject>very-large-scale integration (VLSI)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEUhS0EEiHtmgUbCwm6mtSv8WNZJaEghbZS27Xlca6Ly8Qz2Mmi_x6PUoHEgm78Ot851tVB6D0lC0qJOb9brxaMELUwRBrFXqEZbVvVGCnkazQjhOrGcM3fonelPNarFILN0LhOP1zysIO0x0PAq-xiwstDztNDPd70LrmMv1_fflnfFdw94dUwuqrd5CHEHvA6PcQEkGN6wPdlWq-GtIN-jzeuQMa3Y_wJ-CIlcH1VT9Cb4PoCp8_7HN3X4OXXZnN9-W15sWm8UGbfdFvlOuGMAkqoakE4KTspTCB-q4hsOymZ9jQEH4BzJmXrqs4805oHtfV8js6OuWMefh2g7O0uFg99HQeGQ7GGcMmJVuxFUuv6nxY1eI4-_5fkQohWsAn8-A_4OBxyqvNaLbkmjElaofMj5PNQSoZgxxx3Lj9ZSuxUqa2V2qlSe6y0Oj49x7riXR9ybS6WvzZDTVt9lftw5CIA_JEFl0rSlv8GE-aoKg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Shima, A.</creator><creator>Mine, T.</creator><creator>Torii, K.</creator><creator>Hiraiwa, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20071101</creationdate><title>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</title><author>Shima, A. ; Mine, T. ; Torii, K. ; Hiraiwa, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>CMOS integrated circuits</topic><topic>Compound structure devices</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dopants</topic><topic>Doping profiles</topic><topic>Drains</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Germanium</topic><topic>Halos</topic><topic>Implantation</topic><topic>Integrated circuits</topic><topic>Junctions</topic><topic>laser annealing</topic><topic>Lasers</topic><topic>Logic gates</topic><topic>MOSFETs</topic><topic>Performance evaluation</topic><topic>Rapid thermal annealing</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>source/drain (S/D) extensions (SDEs)</topic><topic>strained silicon</topic><topic>Transistors</topic><topic>very-large-scale integration (VLSI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shima, A.</creatorcontrib><creatorcontrib>Mine, T.</creatorcontrib><creatorcontrib>Torii, K.</creatorcontrib><creatorcontrib>Hiraiwa, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shima, A.</au><au>Mine, T.</au><au>Torii, K.</au><au>Hiraiwa, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2007-11-01</date><risdate>2007</risdate><volume>54</volume><issue>11</issue><spage>2953</spage><epage>2959</epage><pages>2953-2959</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We investigated the effect of dopant profile engineering in planar MOSFETs, in which activation annealing was done using only nonmelt laser spike annealing (LSA). Device performance was 10% and 20% better compared to that when conventional LSA and rapid thermal annealing (RTA) are used, respectively. We achieved this by reengineering the following: 1) angle implantation in the extension of an nFET; 2) germanium preamorphization implantation in the extension of a pFET; 3) halo implantation with lower energy and smaller tilt angle; 4) deep source/drain by two-step implantation, and 5) counter implantation adjusted to the halo conditions. Hot carrier degradation was also reduced to an RTA-comparable level by halo profile engineering. Thus, we show that a submillisecond LSA is a promising technique for the fabrication of ultrashallow junctions for the 45-nm technology node and beyond and that a dopant profile engineering taking into account the minimal diffusion length of LSA is required to bring out the best device performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.906972</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2007-11, Vol.54 (11), p.2953-2959
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2007_906972
source IEEE Xplore (Online service)
subjects Annealing
Applied sciences
CMOS integrated circuits
Compound structure devices
Design. Technologies. Operation analysis. Testing
Devices
Dopants
Doping profiles
Drains
Electronics
Exact sciences and technology
Germanium
Halos
Implantation
Integrated circuits
Junctions
laser annealing
Lasers
Logic gates
MOSFETs
Performance evaluation
Rapid thermal annealing
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
source/drain (S/D) extensions (SDEs)
strained silicon
Transistors
very-large-scale integration (VLSI)
title Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Drain%20Current%20in%20Planar%20MOSFETs%20by%20Dopant%20Profile%20Engineering%20Using%20Nonmelt%20Laser%20Spike%20Annealing&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shima,%20A.&rft.date=2007-11-01&rft.volume=54&rft.issue=11&rft.spage=2953&rft.epage=2959&rft.pages=2953-2959&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.906972&rft_dat=%3Cproquest_cross%3E880658488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-bd7ab4a97e10175e4a66b649f0cd7065b6628c1ffcfe332665a6b62c2883f7dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863802261&rft_id=info:pmid/&rft_ieee_id=4367615&rfr_iscdi=true