Loading…

Generic Carrier-Based Core Model for Undoped Four-Terminal Double-Gate MOSFETs Valid for Symmetric, Asymmetric, and Independent-Gate-Operation Modes

A generic carrier-based core model for undoped four-terminal double-gate (DG) MOSFETs has been developed and is presented in this paper. The model is valid for symmetric, asymmetric, and independent-gate-operation modes. Based on the exact solution of the 1-D Poisson's equation in a general DG...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2008-03, Vol.55 (3), p.816-826
Main Authors: Liu, Feng, He, Jin, Fu, Yue, Hu, Jinhua, Bian, Wei, Song, Yan, Zhang, Xing, Chan, Mansun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3
cites cdi_FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3
container_end_page 826
container_issue 3
container_start_page 816
container_title IEEE transactions on electron devices
container_volume 55
creator Liu, Feng
He, Jin
Fu, Yue
Hu, Jinhua
Bian, Wei
Song, Yan
Zhang, Xing
Chan, Mansun
description A generic carrier-based core model for undoped four-terminal double-gate (DG) MOSFETs has been developed and is presented in this paper. The model is valid for symmetric, asymmetric, and independent-gate-operation modes. Based on the exact solution of the 1-D Poisson's equation in a general DG MOSFET configuration, a rigorous derivation of the drain-current equations from the Pao-Sah's double integral has been performed. By using the channel carriers as the intermediate variable, a very compact analytical drain-current expression can be obtained. The model is extensively verified by comparisons with a 2-D numerical simulator under a large number of biasing conditions. The concise mathematical formulation allows the unification of various DG models into a carrier-based core model for a compact DG MOSFET model development.
doi_str_mv 10.1109/TED.2007.914836
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2007_914836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4455786</ieee_id><sourcerecordid>903620543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3</originalsourceid><addsrcrecordid>eNqFkjtvFDEUhUcIJJZATUFjIQENs_Hjjh9lskmWSEFbZEM78nruSI5m7MGeLfI_-ME4u1GQKKDx8zvHuve4qt4zumSMmtPt5cWSU6qWhoEW8kW1YE2jaiNBvqwWlDJdG6HF6-pNzvdlKwH4ovq1xoDJO7KyKXlM9bnN2JFVTEi-xw4H0sdE7kIXp3J8Ffep3mIafbADuYj73YD12s6F3dxeXW4z-WEH3x00tw_jiHOx_krO8p-1DR25Dh1OWIYwH9T1ZsJkZx_D4c38tnrV2yHju6f5pLor5qtv9c1mfb06u6kdMDHXpWrpuMXeKanEjjcUoFdWc-YaKkr12kDHOOyMU40SAjiABccEckUpteKk-nL0nVL8ucc8t6PPDofBBoz73BoqJKcNiP-SWjXUUEahkJ__SQoAJpnUBfz4F3hfulv6Wtwkb7gSihfo9Ai5FHNO2LdT8qNNDy2j7WPsbYm9fYy9PcZeFJ-ebG12duiTDc7nZxmnjGljWOE-HDmPiM_XAOXPaCl-Ax2UsvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862527372</pqid></control><display><type>article</type><title>Generic Carrier-Based Core Model for Undoped Four-Terminal Double-Gate MOSFETs Valid for Symmetric, Asymmetric, and Independent-Gate-Operation Modes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Feng ; He, Jin ; Fu, Yue ; Hu, Jinhua ; Bian, Wei ; Song, Yan ; Zhang, Xing ; Chan, Mansun</creator><creatorcontrib>Liu, Feng ; He, Jin ; Fu, Yue ; Hu, Jinhua ; Bian, Wei ; Song, Yan ; Zhang, Xing ; Chan, Mansun</creatorcontrib><description>A generic carrier-based core model for undoped four-terminal double-gate (DG) MOSFETs has been developed and is presented in this paper. The model is valid for symmetric, asymmetric, and independent-gate-operation modes. Based on the exact solution of the 1-D Poisson's equation in a general DG MOSFET configuration, a rigorous derivation of the drain-current equations from the Pao-Sah's double integral has been performed. By using the channel carriers as the intermediate variable, a very compact analytical drain-current expression can be obtained. The model is extensively verified by comparisons with a 2-D numerical simulator under a large number of biasing conditions. The concise mathematical formulation allows the unification of various DG models into a carrier-based core model for a compact DG MOSFET model development.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2007.914836</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymmetry ; Carriear-based model ; Carriers ; Channels ; circuit simulation and design ; compact modeling ; Derivation ; double-gate (DG) MOSFET ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronics ; Equations ; Exact sciences and technology ; Integrated circuit modeling ; Mathematical analysis ; Mathematical model ; Mathematical models ; MOSFETs ; nonclassical device ; Numerical models ; Poisson equation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Theoretical study. Circuits analysis and design ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2008-03, Vol.55 (3), p.816-826</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3</citedby><cites>FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4455786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20118991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><creatorcontrib>Fu, Yue</creatorcontrib><creatorcontrib>Hu, Jinhua</creatorcontrib><creatorcontrib>Bian, Wei</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Chan, Mansun</creatorcontrib><title>Generic Carrier-Based Core Model for Undoped Four-Terminal Double-Gate MOSFETs Valid for Symmetric, Asymmetric, and Independent-Gate-Operation Modes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A generic carrier-based core model for undoped four-terminal double-gate (DG) MOSFETs has been developed and is presented in this paper. The model is valid for symmetric, asymmetric, and independent-gate-operation modes. Based on the exact solution of the 1-D Poisson's equation in a general DG MOSFET configuration, a rigorous derivation of the drain-current equations from the Pao-Sah's double integral has been performed. By using the channel carriers as the intermediate variable, a very compact analytical drain-current expression can be obtained. The model is extensively verified by comparisons with a 2-D numerical simulator under a large number of biasing conditions. The concise mathematical formulation allows the unification of various DG models into a carrier-based core model for a compact DG MOSFET model development.</description><subject>Applied sciences</subject><subject>Asymmetry</subject><subject>Carriear-based model</subject><subject>Carriers</subject><subject>Channels</subject><subject>circuit simulation and design</subject><subject>compact modeling</subject><subject>Derivation</subject><subject>double-gate (DG) MOSFET</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit modeling</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>MOSFETs</subject><subject>nonclassical device</subject><subject>Numerical models</subject><subject>Poisson equation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Theoretical study. Circuits analysis and design</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkjtvFDEUhUcIJJZATUFjIQENs_Hjjh9lskmWSEFbZEM78nruSI5m7MGeLfI_-ME4u1GQKKDx8zvHuve4qt4zumSMmtPt5cWSU6qWhoEW8kW1YE2jaiNBvqwWlDJdG6HF6-pNzvdlKwH4ovq1xoDJO7KyKXlM9bnN2JFVTEi-xw4H0sdE7kIXp3J8Ffep3mIafbADuYj73YD12s6F3dxeXW4z-WEH3x00tw_jiHOx_krO8p-1DR25Dh1OWIYwH9T1ZsJkZx_D4c38tnrV2yHju6f5pLor5qtv9c1mfb06u6kdMDHXpWrpuMXeKanEjjcUoFdWc-YaKkr12kDHOOyMU40SAjiABccEckUpteKk-nL0nVL8ucc8t6PPDofBBoz73BoqJKcNiP-SWjXUUEahkJ__SQoAJpnUBfz4F3hfulv6Wtwkb7gSihfo9Ai5FHNO2LdT8qNNDy2j7WPsbYm9fYy9PcZeFJ-ebG12duiTDc7nZxmnjGljWOE-HDmPiM_XAOXPaCl-Ax2UsvU</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Liu, Feng</creator><creator>He, Jin</creator><creator>Fu, Yue</creator><creator>Hu, Jinhua</creator><creator>Bian, Wei</creator><creator>Song, Yan</creator><creator>Zhang, Xing</creator><creator>Chan, Mansun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080301</creationdate><title>Generic Carrier-Based Core Model for Undoped Four-Terminal Double-Gate MOSFETs Valid for Symmetric, Asymmetric, and Independent-Gate-Operation Modes</title><author>Liu, Feng ; He, Jin ; Fu, Yue ; Hu, Jinhua ; Bian, Wei ; Song, Yan ; Zhang, Xing ; Chan, Mansun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Asymmetry</topic><topic>Carriear-based model</topic><topic>Carriers</topic><topic>Channels</topic><topic>circuit simulation and design</topic><topic>compact modeling</topic><topic>Derivation</topic><topic>double-gate (DG) MOSFET</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit modeling</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>MOSFETs</topic><topic>nonclassical device</topic><topic>Numerical models</topic><topic>Poisson equation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Theoretical study. Circuits analysis and design</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><creatorcontrib>Fu, Yue</creatorcontrib><creatorcontrib>Hu, Jinhua</creatorcontrib><creatorcontrib>Bian, Wei</creatorcontrib><creatorcontrib>Song, Yan</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Chan, Mansun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Feng</au><au>He, Jin</au><au>Fu, Yue</au><au>Hu, Jinhua</au><au>Bian, Wei</au><au>Song, Yan</au><au>Zhang, Xing</au><au>Chan, Mansun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic Carrier-Based Core Model for Undoped Four-Terminal Double-Gate MOSFETs Valid for Symmetric, Asymmetric, and Independent-Gate-Operation Modes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>55</volume><issue>3</issue><spage>816</spage><epage>826</epage><pages>816-826</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A generic carrier-based core model for undoped four-terminal double-gate (DG) MOSFETs has been developed and is presented in this paper. The model is valid for symmetric, asymmetric, and independent-gate-operation modes. Based on the exact solution of the 1-D Poisson's equation in a general DG MOSFET configuration, a rigorous derivation of the drain-current equations from the Pao-Sah's double integral has been performed. By using the channel carriers as the intermediate variable, a very compact analytical drain-current expression can be obtained. The model is extensively verified by comparisons with a 2-D numerical simulator under a large number of biasing conditions. The concise mathematical formulation allows the unification of various DG models into a carrier-based core model for a compact DG MOSFET model development.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2007.914836</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2008-03, Vol.55 (3), p.816-826
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2007_914836
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Asymmetry
Carriear-based model
Carriers
Channels
circuit simulation and design
compact modeling
Derivation
double-gate (DG) MOSFET
Electric potential
Electric, optical and optoelectronic circuits
Electronics
Equations
Exact sciences and technology
Integrated circuit modeling
Mathematical analysis
Mathematical model
Mathematical models
MOSFETs
nonclassical device
Numerical models
Poisson equation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Theoretical study. Circuits analysis and design
Transistors
title Generic Carrier-Based Core Model for Undoped Four-Terminal Double-Gate MOSFETs Valid for Symmetric, Asymmetric, and Independent-Gate-Operation Modes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20Carrier-Based%20Core%20Model%20for%20Undoped%20Four-Terminal%20Double-Gate%20MOSFETs%20Valid%20for%20Symmetric,%20Asymmetric,%20and%20Independent-Gate-Operation%20Modes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Liu,%20Feng&rft.date=2008-03-01&rft.volume=55&rft.issue=3&rft.spage=816&rft.epage=826&rft.pages=816-826&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2007.914836&rft_dat=%3Cproquest_cross%3E903620543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-1096c2aefc7673b25044f7a821c503155894d124b9c757334244a4c13e27000a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862527372&rft_id=info:pmid/&rft_ieee_id=4455786&rfr_iscdi=true