Loading…

50-nm Asymmetrically Recessed Metamorphic High-Electron Mobility Transistors With Reduced Source-Drain Spacing: Performance Enhancement and Tradeoffs

Whereas gate-length reduction has served as the major driving force to enhance the performance of GaAs- and InP-based high-electron mobility transistors (HEMTs) over the past three decades, the limitation of this approach begins to emerge. In this paper, we present a systematic evaluation of the imp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2012-01, Vol.59 (1), p.128-138
Main Authors: Dong Xu, Xiaoping Yang, Seekell, P., Mt. Pleasant, L. M., Mohnkern, Lee, Kanin Chu, Stedman, R. G., Vera, A., Isaak, R., Schlesinger, L. L., Carnevale, R. A., Duh, K. H. G., Smith, P. M., Chao, P. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3
cites cdi_FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3
container_end_page 138
container_issue 1
container_start_page 128
container_title IEEE transactions on electron devices
container_volume 59
creator Dong Xu
Xiaoping Yang
Seekell, P.
Mt. Pleasant, L. M.
Mohnkern, Lee
Kanin Chu
Stedman, R. G.
Vera, A.
Isaak, R.
Schlesinger, L. L.
Carnevale, R. A.
Duh, K. H. G.
Smith, P. M.
Chao, P. C.
description Whereas gate-length reduction has served as the major driving force to enhance the performance of GaAs- and InP-based high-electron mobility transistors (HEMTs) over the past three decades, the limitation of this approach begins to emerge. In this paper, we present a systematic evaluation of the impact of greatly reduced source-drain spacing on the performance of 50-nm asymmetrically recessed metamorphic HEMTs (MHEMTs). Extremely high extrinsic transconductance has been achieved over a wide drain bias range starting from as low as 0.1 V by reducing source-drain spacing to 0.5 μm with a self-aligned (SAL) ohmic process. The measured maximum extrinsic transconductance of 3 S/mm is a new record for all HEMT devices on a GaAs substrate and is equal to the best results reported for InP-based HEMTs. With the use of an asymmetric recess, SAL MHEMTs also demonstrate remarkable improvement in other major figures of merit, including off-state breakdown, on-state breakdown, subthreshold characteristics, I ON / I OFF ratio, and the voltage gain over the other SAL HEMTs reported so far. However, they still, in a few respects, under perform the conventional devices typically with 2-μm source-drain spacing. In particular, the on-state breakdown of the SAL devices has been capped at approximately 2 V, even with a very wide asymmetric recess. It appears that the uniqueness of the SAL technology would best fit applications that require low voltage and/or low DC power consumption, which can be fully tapped only when the parasitic capacitance is also properly controlled with, e.g., a high stem gate process.
doi_str_mv 10.1109/TED.2011.2172614
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2011_2172614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6086608</ieee_id><sourcerecordid>25488071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_ugpdcPG7N16aJN9H6AYqiFY9LNpnYyG62JNtDf4j_15SKh-FlmHkG5kHojJIppURfLua3U0YonTI6Y5KKPTShdT2rtBRyH00IoarSXPFDdJTzd2mlEGyCfmpSxR5f503fw5iCNV23wW9gIWdw-BlG0w9ptQwWP4SvZTXvwI5piPh5aEMXxg1eJBNzyOOQMv4M47LAbm0L-z6sk4XqNpkQ8fvK2BC_rvArJD-k3kQLeB6X2-whjthEtz3lYPA-n6ADb7oMp395jD7u5oubh-rp5f7x5vqpskzzsZKaC6laR1swbW0Yo0J7oih3rm2Z04IyYbnnBqSqFfOaMGtdK2tSa0a148eI7O7aNOScwDerFHqTNg0lzVZrU7Q2W63Nn9aCXOyQlclFli_f25D_OVYLpciMlr3z3V4AgP-xJEqW4r_0IIL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>50-nm Asymmetrically Recessed Metamorphic High-Electron Mobility Transistors With Reduced Source-Drain Spacing: Performance Enhancement and Tradeoffs</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dong Xu ; Xiaoping Yang ; Seekell, P. ; Mt. Pleasant, L. M. ; Mohnkern, Lee ; Kanin Chu ; Stedman, R. G. ; Vera, A. ; Isaak, R. ; Schlesinger, L. L. ; Carnevale, R. A. ; Duh, K. H. G. ; Smith, P. M. ; Chao, P. C.</creator><creatorcontrib>Dong Xu ; Xiaoping Yang ; Seekell, P. ; Mt. Pleasant, L. M. ; Mohnkern, Lee ; Kanin Chu ; Stedman, R. G. ; Vera, A. ; Isaak, R. ; Schlesinger, L. L. ; Carnevale, R. A. ; Duh, K. H. G. ; Smith, P. M. ; Chao, P. C.</creatorcontrib><description>Whereas gate-length reduction has served as the major driving force to enhance the performance of GaAs- and InP-based high-electron mobility transistors (HEMTs) over the past three decades, the limitation of this approach begins to emerge. In this paper, we present a systematic evaluation of the impact of greatly reduced source-drain spacing on the performance of 50-nm asymmetrically recessed metamorphic HEMTs (MHEMTs). Extremely high extrinsic transconductance has been achieved over a wide drain bias range starting from as low as 0.1 V by reducing source-drain spacing to 0.5 μm with a self-aligned (SAL) ohmic process. The measured maximum extrinsic transconductance of 3 S/mm is a new record for all HEMT devices on a GaAs substrate and is equal to the best results reported for InP-based HEMTs. With the use of an asymmetric recess, SAL MHEMTs also demonstrate remarkable improvement in other major figures of merit, including off-state breakdown, on-state breakdown, subthreshold characteristics, I ON / I OFF ratio, and the voltage gain over the other SAL HEMTs reported so far. However, they still, in a few respects, under perform the conventional devices typically with 2-μm source-drain spacing. In particular, the on-state breakdown of the SAL devices has been capped at approximately 2 V, even with a very wide asymmetric recess. It appears that the uniqueness of the SAL technology would best fit applications that require low voltage and/or low DC power consumption, which can be fully tapped only when the parasitic capacitance is also properly controlled with, e.g., a high stem gate process.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2172614</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Access resistance ; Applied sciences ; Electronics ; Exact sciences and technology ; high-electron mobility transistors (HEMTs) ; Logic gates ; Metals ; metamorphic HEMTs (MHEMTs) ; mHEMTs ; Microwave and submillimeter wave devices, electron transfer devices ; millimeter-wave transistors ; MODFETs ; modulation-doped field-effect transistors ; Performance evaluation ; Resistance ; self-aligned (SAL) ohmic ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; submillimeter-wave transistors ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2012-01, Vol.59 (1), p.128-138</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3</citedby><cites>FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6086608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25488071$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong Xu</creatorcontrib><creatorcontrib>Xiaoping Yang</creatorcontrib><creatorcontrib>Seekell, P.</creatorcontrib><creatorcontrib>Mt. Pleasant, L. M.</creatorcontrib><creatorcontrib>Mohnkern, Lee</creatorcontrib><creatorcontrib>Kanin Chu</creatorcontrib><creatorcontrib>Stedman, R. G.</creatorcontrib><creatorcontrib>Vera, A.</creatorcontrib><creatorcontrib>Isaak, R.</creatorcontrib><creatorcontrib>Schlesinger, L. L.</creatorcontrib><creatorcontrib>Carnevale, R. A.</creatorcontrib><creatorcontrib>Duh, K. H. G.</creatorcontrib><creatorcontrib>Smith, P. M.</creatorcontrib><creatorcontrib>Chao, P. C.</creatorcontrib><title>50-nm Asymmetrically Recessed Metamorphic High-Electron Mobility Transistors With Reduced Source-Drain Spacing: Performance Enhancement and Tradeoffs</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Whereas gate-length reduction has served as the major driving force to enhance the performance of GaAs- and InP-based high-electron mobility transistors (HEMTs) over the past three decades, the limitation of this approach begins to emerge. In this paper, we present a systematic evaluation of the impact of greatly reduced source-drain spacing on the performance of 50-nm asymmetrically recessed metamorphic HEMTs (MHEMTs). Extremely high extrinsic transconductance has been achieved over a wide drain bias range starting from as low as 0.1 V by reducing source-drain spacing to 0.5 μm with a self-aligned (SAL) ohmic process. The measured maximum extrinsic transconductance of 3 S/mm is a new record for all HEMT devices on a GaAs substrate and is equal to the best results reported for InP-based HEMTs. With the use of an asymmetric recess, SAL MHEMTs also demonstrate remarkable improvement in other major figures of merit, including off-state breakdown, on-state breakdown, subthreshold characteristics, I ON / I OFF ratio, and the voltage gain over the other SAL HEMTs reported so far. However, they still, in a few respects, under perform the conventional devices typically with 2-μm source-drain spacing. In particular, the on-state breakdown of the SAL devices has been capped at approximately 2 V, even with a very wide asymmetric recess. It appears that the uniqueness of the SAL technology would best fit applications that require low voltage and/or low DC power consumption, which can be fully tapped only when the parasitic capacitance is also properly controlled with, e.g., a high stem gate process.</description><subject>Access resistance</subject><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>high-electron mobility transistors (HEMTs)</subject><subject>Logic gates</subject><subject>Metals</subject><subject>metamorphic HEMTs (MHEMTs)</subject><subject>mHEMTs</subject><subject>Microwave and submillimeter wave devices, electron transfer devices</subject><subject>millimeter-wave transistors</subject><subject>MODFETs</subject><subject>modulation-doped field-effect transistors</subject><subject>Performance evaluation</subject><subject>Resistance</subject><subject>self-aligned (SAL) ohmic</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>submillimeter-wave transistors</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWD_ugpdcPG7N16aJN9H6AYqiFY9LNpnYyG62JNtDf4j_15SKh-FlmHkG5kHojJIppURfLua3U0YonTI6Y5KKPTShdT2rtBRyH00IoarSXPFDdJTzd2mlEGyCfmpSxR5f503fw5iCNV23wW9gIWdw-BlG0w9ptQwWP4SvZTXvwI5piPh5aEMXxg1eJBNzyOOQMv4M47LAbm0L-z6sk4XqNpkQ8fvK2BC_rvArJD-k3kQLeB6X2-whjthEtz3lYPA-n6ADb7oMp395jD7u5oubh-rp5f7x5vqpskzzsZKaC6laR1swbW0Yo0J7oih3rm2Z04IyYbnnBqSqFfOaMGtdK2tSa0a148eI7O7aNOScwDerFHqTNg0lzVZrU7Q2W63Nn9aCXOyQlclFli_f25D_OVYLpciMlr3z3V4AgP-xJEqW4r_0IIL_</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Dong Xu</creator><creator>Xiaoping Yang</creator><creator>Seekell, P.</creator><creator>Mt. Pleasant, L. M.</creator><creator>Mohnkern, Lee</creator><creator>Kanin Chu</creator><creator>Stedman, R. G.</creator><creator>Vera, A.</creator><creator>Isaak, R.</creator><creator>Schlesinger, L. L.</creator><creator>Carnevale, R. A.</creator><creator>Duh, K. H. G.</creator><creator>Smith, P. M.</creator><creator>Chao, P. C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201201</creationdate><title>50-nm Asymmetrically Recessed Metamorphic High-Electron Mobility Transistors With Reduced Source-Drain Spacing: Performance Enhancement and Tradeoffs</title><author>Dong Xu ; Xiaoping Yang ; Seekell, P. ; Mt. Pleasant, L. M. ; Mohnkern, Lee ; Kanin Chu ; Stedman, R. G. ; Vera, A. ; Isaak, R. ; Schlesinger, L. L. ; Carnevale, R. A. ; Duh, K. H. G. ; Smith, P. M. ; Chao, P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Access resistance</topic><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>high-electron mobility transistors (HEMTs)</topic><topic>Logic gates</topic><topic>Metals</topic><topic>metamorphic HEMTs (MHEMTs)</topic><topic>mHEMTs</topic><topic>Microwave and submillimeter wave devices, electron transfer devices</topic><topic>millimeter-wave transistors</topic><topic>MODFETs</topic><topic>modulation-doped field-effect transistors</topic><topic>Performance evaluation</topic><topic>Resistance</topic><topic>self-aligned (SAL) ohmic</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>submillimeter-wave transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong Xu</creatorcontrib><creatorcontrib>Xiaoping Yang</creatorcontrib><creatorcontrib>Seekell, P.</creatorcontrib><creatorcontrib>Mt. Pleasant, L. M.</creatorcontrib><creatorcontrib>Mohnkern, Lee</creatorcontrib><creatorcontrib>Kanin Chu</creatorcontrib><creatorcontrib>Stedman, R. G.</creatorcontrib><creatorcontrib>Vera, A.</creatorcontrib><creatorcontrib>Isaak, R.</creatorcontrib><creatorcontrib>Schlesinger, L. L.</creatorcontrib><creatorcontrib>Carnevale, R. A.</creatorcontrib><creatorcontrib>Duh, K. H. G.</creatorcontrib><creatorcontrib>Smith, P. M.</creatorcontrib><creatorcontrib>Chao, P. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong Xu</au><au>Xiaoping Yang</au><au>Seekell, P.</au><au>Mt. Pleasant, L. M.</au><au>Mohnkern, Lee</au><au>Kanin Chu</au><au>Stedman, R. G.</au><au>Vera, A.</au><au>Isaak, R.</au><au>Schlesinger, L. L.</au><au>Carnevale, R. A.</au><au>Duh, K. H. G.</au><au>Smith, P. M.</au><au>Chao, P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>50-nm Asymmetrically Recessed Metamorphic High-Electron Mobility Transistors With Reduced Source-Drain Spacing: Performance Enhancement and Tradeoffs</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2012-01</date><risdate>2012</risdate><volume>59</volume><issue>1</issue><spage>128</spage><epage>138</epage><pages>128-138</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Whereas gate-length reduction has served as the major driving force to enhance the performance of GaAs- and InP-based high-electron mobility transistors (HEMTs) over the past three decades, the limitation of this approach begins to emerge. In this paper, we present a systematic evaluation of the impact of greatly reduced source-drain spacing on the performance of 50-nm asymmetrically recessed metamorphic HEMTs (MHEMTs). Extremely high extrinsic transconductance has been achieved over a wide drain bias range starting from as low as 0.1 V by reducing source-drain spacing to 0.5 μm with a self-aligned (SAL) ohmic process. The measured maximum extrinsic transconductance of 3 S/mm is a new record for all HEMT devices on a GaAs substrate and is equal to the best results reported for InP-based HEMTs. With the use of an asymmetric recess, SAL MHEMTs also demonstrate remarkable improvement in other major figures of merit, including off-state breakdown, on-state breakdown, subthreshold characteristics, I ON / I OFF ratio, and the voltage gain over the other SAL HEMTs reported so far. However, they still, in a few respects, under perform the conventional devices typically with 2-μm source-drain spacing. In particular, the on-state breakdown of the SAL devices has been capped at approximately 2 V, even with a very wide asymmetric recess. It appears that the uniqueness of the SAL technology would best fit applications that require low voltage and/or low DC power consumption, which can be fully tapped only when the parasitic capacitance is also properly controlled with, e.g., a high stem gate process.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2172614</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2012-01, Vol.59 (1), p.128-138
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2011_2172614
source IEEE Electronic Library (IEL) Journals
subjects Access resistance
Applied sciences
Electronics
Exact sciences and technology
high-electron mobility transistors (HEMTs)
Logic gates
Metals
metamorphic HEMTs (MHEMTs)
mHEMTs
Microwave and submillimeter wave devices, electron transfer devices
millimeter-wave transistors
MODFETs
modulation-doped field-effect transistors
Performance evaluation
Resistance
self-aligned (SAL) ohmic
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
submillimeter-wave transistors
Transistors
title 50-nm Asymmetrically Recessed Metamorphic High-Electron Mobility Transistors With Reduced Source-Drain Spacing: Performance Enhancement and Tradeoffs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=50-nm%20Asymmetrically%20Recessed%20Metamorphic%20High-Electron%20Mobility%20Transistors%20With%20Reduced%20Source-Drain%20Spacing:%20Performance%20Enhancement%20and%20Tradeoffs&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Dong%20Xu&rft.date=2012-01&rft.volume=59&rft.issue=1&rft.spage=128&rft.epage=138&rft.pages=128-138&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2172614&rft_dat=%3Cpascalfrancis_cross%3E25488071%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-693468bd1beab5a22149f0813ddbb2d94124c3f3ae68582f902ccdb65059219d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6086608&rfr_iscdi=true