Loading…
Electrical Instability of Double-Gate a-IGZO TFTs With Metal Source/Drain Recessed Electrodes
The electrical stability of double-gate (DG) and single-gate (SG) amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) with metal source/drain recessed electrodes on glass is investigated and compared. In the device structure of the a-IGZO TFTs, both top gate and bottom gate are d...
Saved in:
Published in: | IEEE transactions on electron devices 2014-04, Vol.61 (4), p.1109-1115 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electrical stability of double-gate (DG) and single-gate (SG) amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) with metal source/drain recessed electrodes on glass is investigated and compared. In the device structure of the a-IGZO TFTs, both top gate and bottom gate are defined by lithography, allowing independent or synchronized biasing. Bias temperature stress (BTS) are performed on SG a-IGZO TFTs and DG a-IGZO TFTs with synchronized gate bias condition. Under both positive and negative BTS, synchronized DG a-IGZO TFTs demonstrate much smaller ΔV TH shift than SG a-IGZO TFTs. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2014.2307352 |