Loading…
Operation and Design of van der Waals Tunnel Transistors: A 3-D Quantum Transport Study
We propose a model Hamiltonian for van der Waals tunnel transistors (vdW-TFETs) relying on few physical parameters calibrated against density functional theory (DFT) band structure calculations. Based on this model, we develop a fully 3-D nonequilibrium Green's function simulator including elec...
Saved in:
Published in: | IEEE transactions on electron devices 2016-11, Vol.63 (11), p.4388-4394 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a model Hamiltonian for van der Waals tunnel transistors (vdW-TFETs) relying on few physical parameters calibrated against density functional theory (DFT) band structure calculations. Based on this model, we develop a fully 3-D nonequilibrium Green's function simulator including electron-phonon scattering, and we investigate some fundamental aspects and design challenges related to vdW-TFETs based on single-layer MoS2 and WTe2. In particular, we devote a specific analysis to the impact of top gate alignment and back-oxide thickness on the device performance. Our results suggest that the vdW-TFETs can provide very small values of subthreshold swing (SS) and fairly good ON-state current. However, these devices also pose specific design challenges related to the geometrical features of gated regions, and their ultimate SS may be lower limited by inelastic phonon scattering. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2016.2605144 |