Loading…

Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability

Three cross sections (rectangular, bullet shaped, and triangular), resulting from the fabrication process, of nanoscale In 0.53 Ga 0.47 As-on-insulator FinFETs with a gate length of 10.4 nm are modeled using in-house 3-D finite-element density-gradient quantum-corrected drift-diffusion and Monte Car...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2018-02, Vol.65 (2), p.456-462
Main Authors: Seoane, Natalia, Indalecio, Guillermo, Nagy, Daniel, Kalna, Karol, Garcia-Loureiro, Antonio J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43
cites cdi_FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43
container_end_page 462
container_issue 2
container_start_page 456
container_title IEEE transactions on electron devices
container_volume 65
creator Seoane, Natalia
Indalecio, Guillermo
Nagy, Daniel
Kalna, Karol
Garcia-Loureiro, Antonio J.
description Three cross sections (rectangular, bullet shaped, and triangular), resulting from the fabrication process, of nanoscale In 0.53 Ga 0.47 As-on-insulator FinFETs with a gate length of 10.4 nm are modeled using in-house 3-D finite-element density-gradient quantum-corrected drift-diffusion and Monte Carlo simulations. We investigate the impact of the shape on {I} - {V} characteristics and on the variability induced by metal grain granularity (MGG), line-edge roughness (LER), and random dopants (RDs) and compared with their combined effect. The more triangular the cross section, the lower the OFF-current, the drain-induced-barrier-lowering, and the subthreshold slope. The {I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}} ratio is three times higher for the triangular-shaped FinFET than for the rectangular-shape one. Independent of the cross section, the MGG variations are the preeminent fluctuations affecting the FinFETs, with four to two times larger \sigma {V}_{T} than that from the LER and the RDs, respectively. However, the variability induced threshold voltage ( {V}_{T} ) shift is minimal for the MGG (around 2 mV), but {V}_{T} shift increases 4-fold and 15-fold for the LER and the RDs, respectively. The cross-sectional shape has a very small influence in {V}_{T} and OFF-current of the MGG, LER, and RD variabilities, both separated and in combination, with standard deviation differences of only 4% among the different device shapes. Finally, the statistical sum of the three sources of variability can predict simulated combined variability with only a minor overestimation.
doi_str_mv 10.1109/TED.2017.2785325
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2017_2785325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8246718</ieee_id><sourcerecordid>10_1109_TED_2017_2785325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSd3WyyOZZaa6Gg0OrRMNnM2pVmUza59O1NaPE0DPzfz8zH2COIGYAonnfLl5kUkM9kbrSS-opNQOs8KbI0u2YTIcAkhTLqlt113e-wZmkqJ-x73RzR9rx1fBHbrku2ZHvfBjzw7R6PxNvAQSSh4SvsiW8o_PR7vg4rnHf81YfX5Y5_UHRtbDBY4hhq_oXRY-UPvj_dsxuHh44eLnPKPgdi8ZZs3lfrxXyTWCV0n9SAiMrZdDgcoNIkciEzhzVA7QxSYbU1GnLtLFRyTFaWqHBGkq6yOlVTJs69dnwikiuP0TcYTyWIcvRTDn7K0U958TMgT2fEE9F_3Mg0y8GoPxHHYWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability</title><source>IEEE Xplore (Online service)</source><creator>Seoane, Natalia ; Indalecio, Guillermo ; Nagy, Daniel ; Kalna, Karol ; Garcia-Loureiro, Antonio J.</creator><creatorcontrib>Seoane, Natalia ; Indalecio, Guillermo ; Nagy, Daniel ; Kalna, Karol ; Garcia-Loureiro, Antonio J.</creatorcontrib><description><![CDATA[Three cross sections (rectangular, bullet shaped, and triangular), resulting from the fabrication process, of nanoscale In 0.53 Ga 0.47 As-on-insulator FinFETs with a gate length of 10.4 nm are modeled using in-house 3-D finite-element density-gradient quantum-corrected drift-diffusion and Monte Carlo simulations. We investigate the impact of the shape on <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> characteristics and on the variability induced by metal grain granularity (MGG), line-edge roughness (LER), and random dopants (RDs) and compared with their combined effect. The more triangular the cross section, the lower the OFF-current, the drain-induced-barrier-lowering, and the subthreshold slope. The <inline-formula> <tex-math notation="LaTeX">{I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> ratio is three times higher for the triangular-shaped FinFET than for the rectangular-shape one. Independent of the cross section, the MGG variations are the preeminent fluctuations affecting the FinFETs, with four to two times larger <inline-formula> <tex-math notation="LaTeX">\sigma {V}_{T} </tex-math></inline-formula> than that from the LER and the RDs, respectively. However, the variability induced threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula>) shift is minimal for the MGG (around 2 mV), but <inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula> shift increases 4-fold and 15-fold for the LER and the RDs, respectively. The cross-sectional shape has a very small influence in <inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula> and OFF-current of the MGG, LER, and RD variabilities, both separated and in combination, with standard deviation differences of only 4% among the different device shapes. Finally, the statistical sum of the three sources of variability can predict simulated combined variability with only a minor overestimation.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2017.2785325</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Density gradient (DG) quantum corrections ; drift–diffusion (DD) ; FinFET ; FinFETs ; line-edge roughness (LER) ; Logic gates ; metal grain granularity (MGG) ; Metals ; Performance evaluation ; random dopants (RDs) ; Shape ; Solid modeling ; Threshold voltage</subject><ispartof>IEEE transactions on electron devices, 2018-02, Vol.65 (2), p.456-462</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43</citedby><cites>FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43</cites><orcidid>0000-0003-0854-6596 ; 0000-0003-0574-1513 ; 0000-0003-0973-461X ; 0000-0002-6333-9189 ; 0000-0001-7727-1704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8246718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Seoane, Natalia</creatorcontrib><creatorcontrib>Indalecio, Guillermo</creatorcontrib><creatorcontrib>Nagy, Daniel</creatorcontrib><creatorcontrib>Kalna, Karol</creatorcontrib><creatorcontrib>Garcia-Loureiro, Antonio J.</creatorcontrib><title>Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Three cross sections (rectangular, bullet shaped, and triangular), resulting from the fabrication process, of nanoscale In 0.53 Ga 0.47 As-on-insulator FinFETs with a gate length of 10.4 nm are modeled using in-house 3-D finite-element density-gradient quantum-corrected drift-diffusion and Monte Carlo simulations. We investigate the impact of the shape on <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> characteristics and on the variability induced by metal grain granularity (MGG), line-edge roughness (LER), and random dopants (RDs) and compared with their combined effect. The more triangular the cross section, the lower the OFF-current, the drain-induced-barrier-lowering, and the subthreshold slope. The <inline-formula> <tex-math notation="LaTeX">{I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> ratio is three times higher for the triangular-shaped FinFET than for the rectangular-shape one. Independent of the cross section, the MGG variations are the preeminent fluctuations affecting the FinFETs, with four to two times larger <inline-formula> <tex-math notation="LaTeX">\sigma {V}_{T} </tex-math></inline-formula> than that from the LER and the RDs, respectively. However, the variability induced threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula>) shift is minimal for the MGG (around 2 mV), but <inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula> shift increases 4-fold and 15-fold for the LER and the RDs, respectively. The cross-sectional shape has a very small influence in <inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula> and OFF-current of the MGG, LER, and RD variabilities, both separated and in combination, with standard deviation differences of only 4% among the different device shapes. Finally, the statistical sum of the three sources of variability can predict simulated combined variability with only a minor overestimation.]]></description><subject>Density gradient (DG) quantum corrections</subject><subject>drift–diffusion (DD)</subject><subject>FinFET</subject><subject>FinFETs</subject><subject>line-edge roughness (LER)</subject><subject>Logic gates</subject><subject>metal grain granularity (MGG)</subject><subject>Metals</subject><subject>Performance evaluation</subject><subject>random dopants (RDs)</subject><subject>Shape</subject><subject>Solid modeling</subject><subject>Threshold voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSd3WyyOZZaa6Gg0OrRMNnM2pVmUza59O1NaPE0DPzfz8zH2COIGYAonnfLl5kUkM9kbrSS-opNQOs8KbI0u2YTIcAkhTLqlt113e-wZmkqJ-x73RzR9rx1fBHbrku2ZHvfBjzw7R6PxNvAQSSh4SvsiW8o_PR7vg4rnHf81YfX5Y5_UHRtbDBY4hhq_oXRY-UPvj_dsxuHh44eLnPKPgdi8ZZs3lfrxXyTWCV0n9SAiMrZdDgcoNIkciEzhzVA7QxSYbU1GnLtLFRyTFaWqHBGkq6yOlVTJs69dnwikiuP0TcYTyWIcvRTDn7K0U958TMgT2fEE9F_3Mg0y8GoPxHHYWc</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Seoane, Natalia</creator><creator>Indalecio, Guillermo</creator><creator>Nagy, Daniel</creator><creator>Kalna, Karol</creator><creator>Garcia-Loureiro, Antonio J.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0854-6596</orcidid><orcidid>https://orcid.org/0000-0003-0574-1513</orcidid><orcidid>https://orcid.org/0000-0003-0973-461X</orcidid><orcidid>https://orcid.org/0000-0002-6333-9189</orcidid><orcidid>https://orcid.org/0000-0001-7727-1704</orcidid></search><sort><creationdate>201802</creationdate><title>Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability</title><author>Seoane, Natalia ; Indalecio, Guillermo ; Nagy, Daniel ; Kalna, Karol ; Garcia-Loureiro, Antonio J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Density gradient (DG) quantum corrections</topic><topic>drift–diffusion (DD)</topic><topic>FinFET</topic><topic>FinFETs</topic><topic>line-edge roughness (LER)</topic><topic>Logic gates</topic><topic>metal grain granularity (MGG)</topic><topic>Metals</topic><topic>Performance evaluation</topic><topic>random dopants (RDs)</topic><topic>Shape</topic><topic>Solid modeling</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seoane, Natalia</creatorcontrib><creatorcontrib>Indalecio, Guillermo</creatorcontrib><creatorcontrib>Nagy, Daniel</creatorcontrib><creatorcontrib>Kalna, Karol</creatorcontrib><creatorcontrib>Garcia-Loureiro, Antonio J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seoane, Natalia</au><au>Indalecio, Guillermo</au><au>Nagy, Daniel</au><au>Kalna, Karol</au><au>Garcia-Loureiro, Antonio J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2018-02</date><risdate>2018</risdate><volume>65</volume><issue>2</issue><spage>456</spage><epage>462</epage><pages>456-462</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Three cross sections (rectangular, bullet shaped, and triangular), resulting from the fabrication process, of nanoscale In 0.53 Ga 0.47 As-on-insulator FinFETs with a gate length of 10.4 nm are modeled using in-house 3-D finite-element density-gradient quantum-corrected drift-diffusion and Monte Carlo simulations. We investigate the impact of the shape on <inline-formula> <tex-math notation="LaTeX">{I} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> characteristics and on the variability induced by metal grain granularity (MGG), line-edge roughness (LER), and random dopants (RDs) and compared with their combined effect. The more triangular the cross section, the lower the OFF-current, the drain-induced-barrier-lowering, and the subthreshold slope. The <inline-formula> <tex-math notation="LaTeX">{I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}} </tex-math></inline-formula> ratio is three times higher for the triangular-shaped FinFET than for the rectangular-shape one. Independent of the cross section, the MGG variations are the preeminent fluctuations affecting the FinFETs, with four to two times larger <inline-formula> <tex-math notation="LaTeX">\sigma {V}_{T} </tex-math></inline-formula> than that from the LER and the RDs, respectively. However, the variability induced threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula>) shift is minimal for the MGG (around 2 mV), but <inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula> shift increases 4-fold and 15-fold for the LER and the RDs, respectively. The cross-sectional shape has a very small influence in <inline-formula> <tex-math notation="LaTeX">{V}_{T} </tex-math></inline-formula> and OFF-current of the MGG, LER, and RD variabilities, both separated and in combination, with standard deviation differences of only 4% among the different device shapes. Finally, the statistical sum of the three sources of variability can predict simulated combined variability with only a minor overestimation.]]></abstract><pub>IEEE</pub><doi>10.1109/TED.2017.2785325</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0854-6596</orcidid><orcidid>https://orcid.org/0000-0003-0574-1513</orcidid><orcidid>https://orcid.org/0000-0003-0973-461X</orcidid><orcidid>https://orcid.org/0000-0002-6333-9189</orcidid><orcidid>https://orcid.org/0000-0001-7727-1704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2018-02, Vol.65 (2), p.456-462
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2017_2785325
source IEEE Xplore (Online service)
subjects Density gradient (DG) quantum corrections
drift–diffusion (DD)
FinFET
FinFETs
line-edge roughness (LER)
Logic gates
metal grain granularity (MGG)
Metals
Performance evaluation
random dopants (RDs)
Shape
Solid modeling
Threshold voltage
title Impact of Cross-Sectional Shape on 10-nm Gate Length InGaAs FinFET Performance and Variability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Cross-Sectional%20Shape%20on%2010-nm%20Gate%20Length%20InGaAs%20FinFET%20Performance%20and%20Variability&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Seoane,%20Natalia&rft.date=2018-02&rft.volume=65&rft.issue=2&rft.spage=456&rft.epage=462&rft.pages=456-462&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2017.2785325&rft_dat=%3Ccrossref_ieee_%3E10_1109_TED_2017_2785325%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-d1aaa3fc432511b5e07026fad11df8ae9c5c85175fc1b2a3fcbcee9f82e5b6d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8246718&rfr_iscdi=true