Loading…
The Effect of Proton Irradiation in Suppressing Current Collapse in AlGaN/GaN High-Electron-Mobility Transistors
Almost complete suppression of dynamic ON-resistance in AlGaN/GaN high-electron-mobility transistors is obtained by proton irradiation. In this paper, both small and large power transistors are characterized before and after 3-MeV proton irradiation at different fluences. The irradiated devices show...
Saved in:
Published in: | IEEE transactions on electron devices 2019-01, Vol.66 (1), p.372-377 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Almost complete suppression of dynamic ON-resistance in AlGaN/GaN high-electron-mobility transistors is obtained by proton irradiation. In this paper, both small and large power transistors are characterized before and after 3-MeV proton irradiation at different fluences. The irradiated devices show a high robustness and for specific fluences unaltered threshold voltage and static ON-resistance. However, for fluences higher than 10 13 cm −2 , the dynamic ON-resistance is almost completely suppressed at 600 V and T = 150 °C. After irradiation, a measurable increase in OFF-state leakage current is observed, indicating an increase in the unintentionally doped (UID) GaN layer conductivity. We propose a technology computer-aided design supported model in which this conductivity increase leads to an increased deionization rate, ultimately reducing the dynamic ON-resistance. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2018.2881325 |