Loading…
Modeling Field Effect in Black Silicon and Its Impact on Device Performance
Black silicon (b-Si) has improved the performance of solar cells and photodetectors due to the excellent optics and surface passivation achieved with atomic layer deposition (ALD) dielectric films. One major reason for the success is the strong field effect caused by the high density of fixed charge...
Saved in:
Published in: | IEEE transactions on electron devices 2020-04, Vol.67 (4), p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Black silicon (b-Si) has improved the performance of solar cells and photodetectors due to the excellent optics and surface passivation achieved with atomic layer deposition (ALD) dielectric films. One major reason for the success is the strong field effect caused by the high density of fixed charges present in the dielectric. Depending on the device, the field effect can be utilized also in a more active role than for mere surface passivation, including the formation of floating and/or induced junctions in silicon devices. However, in order to utilize the field effect efficiently, a deeper understanding of the thin-film charge-induced electric field and its effects on charge carriers in b-Si is required. Here, we investigate the field effect in b-Si using the Silvaco Atlas semiconductor device simulator. By studying the electric field and charge-carrier profiles, we develop a model where the electrical properties of b-Si can be approximated with a planar surface, which significantly simplifies the device-level simulations. We validate the model by simulating the spectral response of a b-Si-induced junction photodiode achieving less than 1% difference compared with experimental device performance in a wide range of wavelengths. Finally, we apply the model to study how variation in surface recombination velocity affects the short-wavelength sensitivity and dynamic range in a b-Si photodiode. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2020.2975145 |