Loading…
On the Trap Locations in Bulk FinFETs After Hot Carrier Degradation (HCD)
In this brief, typical locations of the interface and oxide traps generated by the hot carrier degradation (HCD) in FinFETs are studied with experiments and "atomistic" TCAD simulations under the worst case stress conditions. The typical round-Fin locations of different types of traps are...
Saved in:
Published in: | IEEE transactions on electron devices 2020-07, Vol.67 (7), p.3005-3009 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103 |
container_end_page | 3009 |
container_issue | 7 |
container_start_page | 3005 |
container_title | IEEE transactions on electron devices |
container_volume | 67 |
creator | Yu, Zhuoqing Zhang, Zhe Sun, Zixuan Wang, Runsheng Huang, Ru |
description | In this brief, typical locations of the interface and oxide traps generated by the hot carrier degradation (HCD) in FinFETs are studied with experiments and "atomistic" TCAD simulations under the worst case stress conditions. The typical round-Fin locations of different types of traps are analyzed by comparing the experimentally extracted results with the calibrated TCAD simulations. Then, the traps' different impacts on HCD variations in both forward and reverse bias modes are employed to disclose the typical lateral locations of different traps. The results suggest that for both n- and p-type of FinFETs under the worst case stress conditions, the interface traps and oxide traps (type 1) are mainly distributed in the midchannel region closer to the source side on the Fin side, whereas oxide traps (type 2) are mainly distributed in the midchannel region closer to the drain side on the Fin top. Therefore, the two types of oxide traps originate in the different generation locations but may share the same atomistic structures in the same device. The results are helpful to the physical understandings of HCD in the FinFET technology. |
doi_str_mv | 10.1109/TED.2020.2994171 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_2994171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9103954</ieee_id><sourcerecordid>2415961117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqWwI7FYYoEhxXexE3uEtKWVKnUps-XaDqSUpNjpwL_HpRXT3Unvu9M9Qm6BjQCYelpNxiNkyEaoFIcSzsgAhCgzVfDinAwYA5mpXOaX5CrGTRoLznFA5suW9h-eroLZ0UVnTd90baRNS1_22086bdrpZBXpc937QGddTysTQpP6sX8Pxv3h9GFWjR-vyUVtttHfnOqQvKVoNcsWy9d59bzILCroM3Q5SvDopBVWlIZZdIXLnTLcoUEpUXL0dfqg9NYW4LhYl8YLKcTacmD5kNwf9-5C9733sdebbh_adFIjB6EKACgTxY6UDV2Mwdd6F5ovE340MH0QppMwfRCmT8JS5O4Yabz3_7hKJ5Xg-S92eWOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415961117</pqid></control><display><type>article</type><title>On the Trap Locations in Bulk FinFETs After Hot Carrier Degradation (HCD)</title><source>IEEE Xplore (Online service)</source><creator>Yu, Zhuoqing ; Zhang, Zhe ; Sun, Zixuan ; Wang, Runsheng ; Huang, Ru</creator><creatorcontrib>Yu, Zhuoqing ; Zhang, Zhe ; Sun, Zixuan ; Wang, Runsheng ; Huang, Ru</creatorcontrib><description>In this brief, typical locations of the interface and oxide traps generated by the hot carrier degradation (HCD) in FinFETs are studied with experiments and "atomistic" TCAD simulations under the worst case stress conditions. The typical round-Fin locations of different types of traps are analyzed by comparing the experimentally extracted results with the calibrated TCAD simulations. Then, the traps' different impacts on HCD variations in both forward and reverse bias modes are employed to disclose the typical lateral locations of different traps. The results suggest that for both n- and p-type of FinFETs under the worst case stress conditions, the interface traps and oxide traps (type 1) are mainly distributed in the midchannel region closer to the source side on the Fin side, whereas oxide traps (type 2) are mainly distributed in the midchannel region closer to the drain side on the Fin top. Therefore, the two types of oxide traps originate in the different generation locations but may share the same atomistic structures in the same device. The results are helpful to the physical understandings of HCD in the FinFET technology.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.2994171</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Degradation ; Electron traps ; FinFET ; FinFETs ; hot carrier ; Hot carriers ; reliability ; Semiconductor process modeling ; Stress ; trap location ; variability</subject><ispartof>IEEE transactions on electron devices, 2020-07, Vol.67 (7), p.3005-3009</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103</citedby><cites>FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103</cites><orcidid>0000-0002-7514-0767 ; 0000-0002-3952-1167 ; 0000-0002-8257-5531 ; 0000-0002-7793-6574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9103954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids></links><search><creatorcontrib>Yu, Zhuoqing</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Sun, Zixuan</creatorcontrib><creatorcontrib>Wang, Runsheng</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><title>On the Trap Locations in Bulk FinFETs After Hot Carrier Degradation (HCD)</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this brief, typical locations of the interface and oxide traps generated by the hot carrier degradation (HCD) in FinFETs are studied with experiments and "atomistic" TCAD simulations under the worst case stress conditions. The typical round-Fin locations of different types of traps are analyzed by comparing the experimentally extracted results with the calibrated TCAD simulations. Then, the traps' different impacts on HCD variations in both forward and reverse bias modes are employed to disclose the typical lateral locations of different traps. The results suggest that for both n- and p-type of FinFETs under the worst case stress conditions, the interface traps and oxide traps (type 1) are mainly distributed in the midchannel region closer to the source side on the Fin side, whereas oxide traps (type 2) are mainly distributed in the midchannel region closer to the drain side on the Fin top. Therefore, the two types of oxide traps originate in the different generation locations but may share the same atomistic structures in the same device. The results are helpful to the physical understandings of HCD in the FinFET technology.</description><subject>Analytical models</subject><subject>Degradation</subject><subject>Electron traps</subject><subject>FinFET</subject><subject>FinFETs</subject><subject>hot carrier</subject><subject>Hot carriers</subject><subject>reliability</subject><subject>Semiconductor process modeling</subject><subject>Stress</subject><subject>trap location</subject><subject>variability</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqWwI7FYYoEhxXexE3uEtKWVKnUps-XaDqSUpNjpwL_HpRXT3Unvu9M9Qm6BjQCYelpNxiNkyEaoFIcSzsgAhCgzVfDinAwYA5mpXOaX5CrGTRoLznFA5suW9h-eroLZ0UVnTd90baRNS1_22086bdrpZBXpc937QGddTysTQpP6sX8Pxv3h9GFWjR-vyUVtttHfnOqQvKVoNcsWy9d59bzILCroM3Q5SvDopBVWlIZZdIXLnTLcoUEpUXL0dfqg9NYW4LhYl8YLKcTacmD5kNwf9-5C9733sdebbh_adFIjB6EKACgTxY6UDV2Mwdd6F5ovE340MH0QppMwfRCmT8JS5O4Yabz3_7hKJ5Xg-S92eWOw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yu, Zhuoqing</creator><creator>Zhang, Zhe</creator><creator>Sun, Zixuan</creator><creator>Wang, Runsheng</creator><creator>Huang, Ru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7514-0767</orcidid><orcidid>https://orcid.org/0000-0002-3952-1167</orcidid><orcidid>https://orcid.org/0000-0002-8257-5531</orcidid><orcidid>https://orcid.org/0000-0002-7793-6574</orcidid></search><sort><creationdate>20200701</creationdate><title>On the Trap Locations in Bulk FinFETs After Hot Carrier Degradation (HCD)</title><author>Yu, Zhuoqing ; Zhang, Zhe ; Sun, Zixuan ; Wang, Runsheng ; Huang, Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Degradation</topic><topic>Electron traps</topic><topic>FinFET</topic><topic>FinFETs</topic><topic>hot carrier</topic><topic>Hot carriers</topic><topic>reliability</topic><topic>Semiconductor process modeling</topic><topic>Stress</topic><topic>trap location</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zhuoqing</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Sun, Zixuan</creatorcontrib><creatorcontrib>Wang, Runsheng</creatorcontrib><creatorcontrib>Huang, Ru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zhuoqing</au><au>Zhang, Zhe</au><au>Sun, Zixuan</au><au>Wang, Runsheng</au><au>Huang, Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Trap Locations in Bulk FinFETs After Hot Carrier Degradation (HCD)</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>67</volume><issue>7</issue><spage>3005</spage><epage>3009</epage><pages>3005-3009</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this brief, typical locations of the interface and oxide traps generated by the hot carrier degradation (HCD) in FinFETs are studied with experiments and "atomistic" TCAD simulations under the worst case stress conditions. The typical round-Fin locations of different types of traps are analyzed by comparing the experimentally extracted results with the calibrated TCAD simulations. Then, the traps' different impacts on HCD variations in both forward and reverse bias modes are employed to disclose the typical lateral locations of different traps. The results suggest that for both n- and p-type of FinFETs under the worst case stress conditions, the interface traps and oxide traps (type 1) are mainly distributed in the midchannel region closer to the source side on the Fin side, whereas oxide traps (type 2) are mainly distributed in the midchannel region closer to the drain side on the Fin top. Therefore, the two types of oxide traps originate in the different generation locations but may share the same atomistic structures in the same device. The results are helpful to the physical understandings of HCD in the FinFET technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.2994171</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7514-0767</orcidid><orcidid>https://orcid.org/0000-0002-3952-1167</orcidid><orcidid>https://orcid.org/0000-0002-8257-5531</orcidid><orcidid>https://orcid.org/0000-0002-7793-6574</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2020-07, Vol.67 (7), p.3005-3009 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2020_2994171 |
source | IEEE Xplore (Online service) |
subjects | Analytical models Degradation Electron traps FinFET FinFETs hot carrier Hot carriers reliability Semiconductor process modeling Stress trap location variability |
title | On the Trap Locations in Bulk FinFETs After Hot Carrier Degradation (HCD) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Trap%20Locations%20in%20Bulk%20FinFETs%20After%20Hot%20Carrier%20Degradation%20(HCD)&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Yu,%20Zhuoqing&rft.date=2020-07-01&rft.volume=67&rft.issue=7&rft.spage=3005&rft.epage=3009&rft.pages=3005-3009&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.2994171&rft_dat=%3Cproquest_cross%3E2415961117%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2d3281e2d8c5c57a0c2d6d3d9a4d2a2882842ef1717ecc61d45b7ae5855bc4103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2415961117&rft_id=info:pmid/&rft_ieee_id=9103954&rfr_iscdi=true |