Loading…

Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes

In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel ver...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2021-02, Vol.68 (2), p.688-696
Main Authors: Sezgin-Ugranli, Hatice Gul, Ozcelep, Yasin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93
cites cdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93
container_end_page 696
container_issue 2
container_start_page 688
container_title IEEE transactions on electron devices
container_volume 68
creator Sezgin-Ugranli, Hatice Gul
Ozcelep, Yasin
description In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.
doi_str_mv 10.1109/TED.2020.3044269
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_3044269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311835</ieee_id><sourcerecordid>2480873726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAg6etmU32I0dt6wdUKqjnZUwmulJ3a5L68TP8x0ZWPM3My_PODC9jhyAmAEKf3s9nk1zkYiKFUnmpt9gIiqLKdKnKbTYSAupMy1rusr0QXtJYJmzEvmcUyb-2Hca273jv-G3_QZ7fLO8u5vcngV9iJL78bC3xGT15tAP40NlEzVrnyFMX-XxFJvrW4IrfRU8h8AW90yrwcwxkeXIMcnbd2Y1JyrByims0bcTOpP4ZuycK-2zH4SrQwV8ds4f0yfQqWywvr6dni8zkGmKmhEPn0JauqB8RCm2MMpUCBQiPri4k1kJUALIqhCpFkVvUFioNGsCi03LMjoe9a9-_bSjE5qXf-C6dbHJVi7qSVV4mSgyU8X0Inlyz9u0r-q8GRPMbfJOCb36Db_6CT5ajwdIS0T-uJUAtC_kDDHN-8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480873726</pqid></control><display><type>article</type><title>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sezgin-Ugranli, Hatice Gul ; Ozcelep, Yasin</creator><creatorcontrib>Sezgin-Ugranli, Hatice Gul ; Ozcelep, Yasin</creatorcontrib><description>In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3044269</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Circuit design ; circuit simulation ; Curve fitting ; Degradation ; Diffusion effects ; Field effect transistors ; Integrated circuit modeling ; Logic gates ; Mathematical model ; Mathematical models ; Metal oxide semiconductors ; modeling ; MOSFETs ; nonlinear circuits ; power MOSFET ; Semiconductor devices ; SPICE ; Stress ; Voltage measurement</subject><ispartof>IEEE transactions on electron devices, 2021-02, Vol.68 (2), p.688-696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</citedby><cites>FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</cites><orcidid>0000-0003-1711-7806 ; 0000-0002-5943-5952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Sezgin-Ugranli, Hatice Gul</creatorcontrib><creatorcontrib>Ozcelep, Yasin</creatorcontrib><title>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.</description><subject>Capacitance</subject><subject>Circuit design</subject><subject>circuit simulation</subject><subject>Curve fitting</subject><subject>Degradation</subject><subject>Diffusion effects</subject><subject>Field effect transistors</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Metal oxide semiconductors</subject><subject>modeling</subject><subject>MOSFETs</subject><subject>nonlinear circuits</subject><subject>power MOSFET</subject><subject>Semiconductor devices</subject><subject>SPICE</subject><subject>Stress</subject><subject>Voltage measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvAg6etmU32I0dt6wdUKqjnZUwmulJ3a5L68TP8x0ZWPM3My_PODC9jhyAmAEKf3s9nk1zkYiKFUnmpt9gIiqLKdKnKbTYSAupMy1rusr0QXtJYJmzEvmcUyb-2Hca273jv-G3_QZ7fLO8u5vcngV9iJL78bC3xGT15tAP40NlEzVrnyFMX-XxFJvrW4IrfRU8h8AW90yrwcwxkeXIMcnbd2Y1JyrByims0bcTOpP4ZuycK-2zH4SrQwV8ds4f0yfQqWywvr6dni8zkGmKmhEPn0JauqB8RCm2MMpUCBQiPri4k1kJUALIqhCpFkVvUFioNGsCi03LMjoe9a9-_bSjE5qXf-C6dbHJVi7qSVV4mSgyU8X0Inlyz9u0r-q8GRPMbfJOCb36Db_6CT5ajwdIS0T-uJUAtC_kDDHN-8Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sezgin-Ugranli, Hatice Gul</creator><creator>Ozcelep, Yasin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1711-7806</orcidid><orcidid>https://orcid.org/0000-0002-5943-5952</orcidid></search><sort><creationdate>20210201</creationdate><title>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</title><author>Sezgin-Ugranli, Hatice Gul ; Ozcelep, Yasin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitance</topic><topic>Circuit design</topic><topic>circuit simulation</topic><topic>Curve fitting</topic><topic>Degradation</topic><topic>Diffusion effects</topic><topic>Field effect transistors</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Metal oxide semiconductors</topic><topic>modeling</topic><topic>MOSFETs</topic><topic>nonlinear circuits</topic><topic>power MOSFET</topic><topic>Semiconductor devices</topic><topic>SPICE</topic><topic>Stress</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sezgin-Ugranli, Hatice Gul</creatorcontrib><creatorcontrib>Ozcelep, Yasin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sezgin-Ugranli, Hatice Gul</au><au>Ozcelep, Yasin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>688</spage><epage>696</epage><pages>688-696</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3044269</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1711-7806</orcidid><orcidid>https://orcid.org/0000-0002-5943-5952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-02, Vol.68 (2), p.688-696
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2020_3044269
source IEEE Electronic Library (IEL) Journals
subjects Capacitance
Circuit design
circuit simulation
Curve fitting
Degradation
Diffusion effects
Field effect transistors
Integrated circuit modeling
Logic gates
Mathematical model
Mathematical models
Metal oxide semiconductors
modeling
MOSFETs
nonlinear circuits
power MOSFET
Semiconductor devices
SPICE
Stress
Voltage measurement
title Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Power%20MOSFET's%20Gate%20Oxide%20Degradation%20Under%20Different%20Electrical%20Stress%20Levels%20Based%20on%20Stress-Induced%20Oxide%20Capacitance%20Changes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sezgin-Ugranli,%20Hatice%20Gul&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=688&rft.epage=696&rft.pages=688-696&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3044269&rft_dat=%3Cproquest_cross%3E2480873726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480873726&rft_id=info:pmid/&rft_ieee_id=9311835&rfr_iscdi=true