Loading…
Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes
In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel ver...
Saved in:
Published in: | IEEE transactions on electron devices 2021-02, Vol.68 (2), p.688-696 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93 |
container_end_page | 696 |
container_issue | 2 |
container_start_page | 688 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Sezgin-Ugranli, Hatice Gul Ozcelep, Yasin |
description | In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively. |
doi_str_mv | 10.1109/TED.2020.3044269 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2020_3044269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9311835</ieee_id><sourcerecordid>2480873726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvAg6etmU32I0dt6wdUKqjnZUwmulJ3a5L68TP8x0ZWPM3My_PODC9jhyAmAEKf3s9nk1zkYiKFUnmpt9gIiqLKdKnKbTYSAupMy1rusr0QXtJYJmzEvmcUyb-2Hca273jv-G3_QZ7fLO8u5vcngV9iJL78bC3xGT15tAP40NlEzVrnyFMX-XxFJvrW4IrfRU8h8AW90yrwcwxkeXIMcnbd2Y1JyrByims0bcTOpP4ZuycK-2zH4SrQwV8ds4f0yfQqWywvr6dni8zkGmKmhEPn0JauqB8RCm2MMpUCBQiPri4k1kJUALIqhCpFkVvUFioNGsCi03LMjoe9a9-_bSjE5qXf-C6dbHJVi7qSVV4mSgyU8X0Inlyz9u0r-q8GRPMbfJOCb36Db_6CT5ajwdIS0T-uJUAtC_kDDHN-8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480873726</pqid></control><display><type>article</type><title>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sezgin-Ugranli, Hatice Gul ; Ozcelep, Yasin</creator><creatorcontrib>Sezgin-Ugranli, Hatice Gul ; Ozcelep, Yasin</creatorcontrib><description>In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3044269</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Circuit design ; circuit simulation ; Curve fitting ; Degradation ; Diffusion effects ; Field effect transistors ; Integrated circuit modeling ; Logic gates ; Mathematical model ; Mathematical models ; Metal oxide semiconductors ; modeling ; MOSFETs ; nonlinear circuits ; power MOSFET ; Semiconductor devices ; SPICE ; Stress ; Voltage measurement</subject><ispartof>IEEE transactions on electron devices, 2021-02, Vol.68 (2), p.688-696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</citedby><cites>FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</cites><orcidid>0000-0003-1711-7806 ; 0000-0002-5943-5952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9311835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Sezgin-Ugranli, Hatice Gul</creatorcontrib><creatorcontrib>Ozcelep, Yasin</creatorcontrib><title>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.</description><subject>Capacitance</subject><subject>Circuit design</subject><subject>circuit simulation</subject><subject>Curve fitting</subject><subject>Degradation</subject><subject>Diffusion effects</subject><subject>Field effect transistors</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Metal oxide semiconductors</subject><subject>modeling</subject><subject>MOSFETs</subject><subject>nonlinear circuits</subject><subject>power MOSFET</subject><subject>Semiconductor devices</subject><subject>SPICE</subject><subject>Stress</subject><subject>Voltage measurement</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wUvAg6etmU32I0dt6wdUKqjnZUwmulJ3a5L68TP8x0ZWPM3My_PODC9jhyAmAEKf3s9nk1zkYiKFUnmpt9gIiqLKdKnKbTYSAupMy1rusr0QXtJYJmzEvmcUyb-2Hca273jv-G3_QZ7fLO8u5vcngV9iJL78bC3xGT15tAP40NlEzVrnyFMX-XxFJvrW4IrfRU8h8AW90yrwcwxkeXIMcnbd2Y1JyrByims0bcTOpP4ZuycK-2zH4SrQwV8ds4f0yfQqWywvr6dni8zkGmKmhEPn0JauqB8RCm2MMpUCBQiPri4k1kJUALIqhCpFkVvUFioNGsCi03LMjoe9a9-_bSjE5qXf-C6dbHJVi7qSVV4mSgyU8X0Inlyz9u0r-q8GRPMbfJOCb36Db_6CT5ajwdIS0T-uJUAtC_kDDHN-8Q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sezgin-Ugranli, Hatice Gul</creator><creator>Ozcelep, Yasin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1711-7806</orcidid><orcidid>https://orcid.org/0000-0002-5943-5952</orcidid></search><sort><creationdate>20210201</creationdate><title>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</title><author>Sezgin-Ugranli, Hatice Gul ; Ozcelep, Yasin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Capacitance</topic><topic>Circuit design</topic><topic>circuit simulation</topic><topic>Curve fitting</topic><topic>Degradation</topic><topic>Diffusion effects</topic><topic>Field effect transistors</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Metal oxide semiconductors</topic><topic>modeling</topic><topic>MOSFETs</topic><topic>nonlinear circuits</topic><topic>power MOSFET</topic><topic>Semiconductor devices</topic><topic>SPICE</topic><topic>Stress</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sezgin-Ugranli, Hatice Gul</creatorcontrib><creatorcontrib>Ozcelep, Yasin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sezgin-Ugranli, Hatice Gul</au><au>Ozcelep, Yasin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>688</spage><epage>696</epage><pages>688-696</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, we aim to investigate the gate oxide degradation of power MOSFETs through oxide capacitance. We focus on modeling the oxide capacitance variation as a function of several stress levels and time intervals. The experimental procedure is carried out by means of commercial n-channel vertical double-diffused metal-oxide semiconductor field-effect transistors (VDMOSFETs) that have maximum voltage and current ratings as 200 V and 5.2A, respectively. We calculate the oxide capacitance using measurable reverse capacitance that is equal to gate-drain capacitance. The turn-around point is determined at each stress level. We observe that the oxide capacitance shows a nonlinear variation due to the stress time and level. The variation is divided into two regions for the model. The modeling procedure starts with the mathematical fitting. The equations are obtained by using curve fitting methods. The circuit model is designed via SPICE Simulation by using these equations. We also consider the turn-around points for the circuit design. The simulation and experimental results have good compatibility. We achieve 92.3% and 90.8% similarity on average for first and second region of the variation, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3044269</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1711-7806</orcidid><orcidid>https://orcid.org/0000-0002-5943-5952</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-02, Vol.68 (2), p.688-696 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2020_3044269 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Capacitance Circuit design circuit simulation Curve fitting Degradation Diffusion effects Field effect transistors Integrated circuit modeling Logic gates Mathematical model Mathematical models Metal oxide semiconductors modeling MOSFETs nonlinear circuits power MOSFET Semiconductor devices SPICE Stress Voltage measurement |
title | Determination of Power MOSFET's Gate Oxide Degradation Under Different Electrical Stress Levels Based on Stress-Induced Oxide Capacitance Changes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Power%20MOSFET's%20Gate%20Oxide%20Degradation%20Under%20Different%20Electrical%20Stress%20Levels%20Based%20on%20Stress-Induced%20Oxide%20Capacitance%20Changes&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sezgin-Ugranli,%20Hatice%20Gul&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=688&rft.epage=696&rft.pages=688-696&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3044269&rft_dat=%3Cproquest_cross%3E2480873726%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-40faffad6f58ba159cc4c74141a1bf853a800711375046052da9d1791911daf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480873726&rft_id=info:pmid/&rft_ieee_id=9311835&rfr_iscdi=true |