Loading…
Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices
In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV...
Saved in:
Published in: | IEEE transactions on electron devices 2021-09, Vol.68 (9), p.4766-4772 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413 |
container_end_page | 4772 |
container_issue | 9 |
container_start_page | 4766 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Kwon, Dongseok Woo, Sung Yun Bae, Jong-Ho Lim, Suhwan Park, Byung-Gook Lee, Jong-Ho |
description | In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function. |
doi_str_mv | 10.1109/TED.2021.3098503 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3098503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502843</ieee_id><sourcerecordid>2562950908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wcuC562TzGZ3c9TaWqGoYHsTQprMStrarcm2xX_v1hZPjze89wY-xq459DgHdTcZPPYECN5DUKUEPGEdLmWRqjzLT1kHgJepwhLP2UWM89bmWSY67GNkgtuZQOmDieSS97Vf-NVn8kKbYJatNLs6LGIyjftr36yN9U0d0jHFmLzV0Td-S8mQyM2MXfzV6lXySFtvKV6ys8osI10dtcumw8GkP0rHr0_P_ftxaoXiTVoUiFVuDWHFKbfWzaDIQSKKQvFZJZxCICmlQ8dN5YgXskRJypDkFWQcu-z2sLsO9feGYqPn9Sas2pdayFwoCQrKNgWHlA11jIEqvQ7-y4QfzUHvGeqWod4z1EeGbeXmUPFE9B9v90SZIf4C05xs1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562950908</pqid></control><display><type>article</type><title>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kwon, Dongseok ; Woo, Sung Yun ; Bae, Jong-Ho ; Lim, Suhwan ; Park, Byung-Gook ; Lee, Jong-Ho</creator><creatorcontrib>Kwon, Dongseok ; Woo, Sung Yun ; Bae, Jong-Ho ; Lim, Suhwan ; Park, Byung-Gook ; Lee, Jong-Ho</creatorcontrib><description>In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3098503</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Biological neural networks ; Capacitors ; Electric potential ; Hardware ; Leaky integrate and fire (LIF) neuron ; Membrane potentials ; Micromechanical devices ; Neural networks ; neuromorphic ; Neurons ; Positive feedback ; positive feedback (PF) devices ; Signal processing ; Spiking ; spiking neural networks (SNNs) ; Training</subject><ispartof>IEEE transactions on electron devices, 2021-09, Vol.68 (9), p.4766-4772</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</citedby><cites>FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</cites><orcidid>0000-0003-3559-9802 ; 0000-0001-7676-8938 ; 0000-0002-1786-7132 ; 0000-0002-2962-2458 ; 0000-0003-3578-5488 ; 0000-0002-0857-3183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Woo, Sung Yun</creatorcontrib><creatorcontrib>Bae, Jong-Ho</creatorcontrib><creatorcontrib>Lim, Suhwan</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.</description><subject>Anodes</subject><subject>Biological neural networks</subject><subject>Capacitors</subject><subject>Electric potential</subject><subject>Hardware</subject><subject>Leaky integrate and fire (LIF) neuron</subject><subject>Membrane potentials</subject><subject>Micromechanical devices</subject><subject>Neural networks</subject><subject>neuromorphic</subject><subject>Neurons</subject><subject>Positive feedback</subject><subject>positive feedback (PF) devices</subject><subject>Signal processing</subject><subject>Spiking</subject><subject>spiking neural networks (SNNs)</subject><subject>Training</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt3wcuC562TzGZ3c9TaWqGoYHsTQprMStrarcm2xX_v1hZPjze89wY-xq459DgHdTcZPPYECN5DUKUEPGEdLmWRqjzLT1kHgJepwhLP2UWM89bmWSY67GNkgtuZQOmDieSS97Vf-NVn8kKbYJatNLs6LGIyjftr36yN9U0d0jHFmLzV0Td-S8mQyM2MXfzV6lXySFtvKV6ys8osI10dtcumw8GkP0rHr0_P_ftxaoXiTVoUiFVuDWHFKbfWzaDIQSKKQvFZJZxCICmlQ8dN5YgXskRJypDkFWQcu-z2sLsO9feGYqPn9Sas2pdayFwoCQrKNgWHlA11jIEqvQ7-y4QfzUHvGeqWod4z1EeGbeXmUPFE9B9v90SZIf4C05xs1A</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kwon, Dongseok</creator><creator>Woo, Sung Yun</creator><creator>Bae, Jong-Ho</creator><creator>Lim, Suhwan</creator><creator>Park, Byung-Gook</creator><creator>Lee, Jong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0002-1786-7132</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid><orcidid>https://orcid.org/0000-0003-3578-5488</orcidid><orcidid>https://orcid.org/0000-0002-0857-3183</orcidid></search><sort><creationdate>20210901</creationdate><title>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</title><author>Kwon, Dongseok ; Woo, Sung Yun ; Bae, Jong-Ho ; Lim, Suhwan ; Park, Byung-Gook ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Biological neural networks</topic><topic>Capacitors</topic><topic>Electric potential</topic><topic>Hardware</topic><topic>Leaky integrate and fire (LIF) neuron</topic><topic>Membrane potentials</topic><topic>Micromechanical devices</topic><topic>Neural networks</topic><topic>neuromorphic</topic><topic>Neurons</topic><topic>Positive feedback</topic><topic>positive feedback (PF) devices</topic><topic>Signal processing</topic><topic>Spiking</topic><topic>spiking neural networks (SNNs)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Woo, Sung Yun</creatorcontrib><creatorcontrib>Bae, Jong-Ho</creatorcontrib><creatorcontrib>Lim, Suhwan</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Dongseok</au><au>Woo, Sung Yun</au><au>Bae, Jong-Ho</au><au>Lim, Suhwan</au><au>Park, Byung-Gook</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>4766</spage><epage>4772</epage><pages>4766-4772</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3098503</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0002-1786-7132</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid><orcidid>https://orcid.org/0000-0003-3578-5488</orcidid><orcidid>https://orcid.org/0000-0002-0857-3183</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-09, Vol.68 (9), p.4766-4772 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2021_3098503 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Anodes Biological neural networks Capacitors Electric potential Hardware Leaky integrate and fire (LIF) neuron Membrane potentials Micromechanical devices Neural networks neuromorphic Neurons Positive feedback positive feedback (PF) devices Signal processing Spiking spiking neural networks (SNNs) Training |
title | Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware-Based%20Spiking%20Neural%20Networks%20Using%20Capacitor-Less%20Positive%20Feedback%20Neuron%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kwon,%20Dongseok&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=4766&rft.epage=4772&rft.pages=4766-4772&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3098503&rft_dat=%3Cproquest_cross%3E2562950908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562950908&rft_id=info:pmid/&rft_ieee_id=9502843&rfr_iscdi=true |