Loading…

Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices

In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2021-09, Vol.68 (9), p.4766-4772
Main Authors: Kwon, Dongseok, Woo, Sung Yun, Bae, Jong-Ho, Lim, Suhwan, Park, Byung-Gook, Lee, Jong-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413
cites cdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413
container_end_page 4772
container_issue 9
container_start_page 4766
container_title IEEE transactions on electron devices
container_volume 68
creator Kwon, Dongseok
Woo, Sung Yun
Bae, Jong-Ho
Lim, Suhwan
Park, Byung-Gook
Lee, Jong-Ho
description In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS < 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.
doi_str_mv 10.1109/TED.2021.3098503
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3098503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502843</ieee_id><sourcerecordid>2562950908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wcuC562TzGZ3c9TaWqGoYHsTQprMStrarcm2xX_v1hZPjze89wY-xq459DgHdTcZPPYECN5DUKUEPGEdLmWRqjzLT1kHgJepwhLP2UWM89bmWSY67GNkgtuZQOmDieSS97Vf-NVn8kKbYJatNLs6LGIyjftr36yN9U0d0jHFmLzV0Td-S8mQyM2MXfzV6lXySFtvKV6ys8osI10dtcumw8GkP0rHr0_P_ftxaoXiTVoUiFVuDWHFKbfWzaDIQSKKQvFZJZxCICmlQ8dN5YgXskRJypDkFWQcu-z2sLsO9feGYqPn9Sas2pdayFwoCQrKNgWHlA11jIEqvQ7-y4QfzUHvGeqWod4z1EeGbeXmUPFE9B9v90SZIf4C05xs1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562950908</pqid></control><display><type>article</type><title>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kwon, Dongseok ; Woo, Sung Yun ; Bae, Jong-Ho ; Lim, Suhwan ; Park, Byung-Gook ; Lee, Jong-Ho</creator><creatorcontrib>Kwon, Dongseok ; Woo, Sung Yun ; Bae, Jong-Ho ; Lim, Suhwan ; Park, Byung-Gook ; Lee, Jong-Ho</creatorcontrib><description>In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS &lt; 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3098503</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anodes ; Biological neural networks ; Capacitors ; Electric potential ; Hardware ; Leaky integrate and fire (LIF) neuron ; Membrane potentials ; Micromechanical devices ; Neural networks ; neuromorphic ; Neurons ; Positive feedback ; positive feedback (PF) devices ; Signal processing ; Spiking ; spiking neural networks (SNNs) ; Training</subject><ispartof>IEEE transactions on electron devices, 2021-09, Vol.68 (9), p.4766-4772</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</citedby><cites>FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</cites><orcidid>0000-0003-3559-9802 ; 0000-0001-7676-8938 ; 0000-0002-1786-7132 ; 0000-0002-2962-2458 ; 0000-0003-3578-5488 ; 0000-0002-0857-3183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Woo, Sung Yun</creatorcontrib><creatorcontrib>Bae, Jong-Ho</creatorcontrib><creatorcontrib>Lim, Suhwan</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS &lt; 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.</description><subject>Anodes</subject><subject>Biological neural networks</subject><subject>Capacitors</subject><subject>Electric potential</subject><subject>Hardware</subject><subject>Leaky integrate and fire (LIF) neuron</subject><subject>Membrane potentials</subject><subject>Micromechanical devices</subject><subject>Neural networks</subject><subject>neuromorphic</subject><subject>Neurons</subject><subject>Positive feedback</subject><subject>positive feedback (PF) devices</subject><subject>Signal processing</subject><subject>Spiking</subject><subject>spiking neural networks (SNNs)</subject><subject>Training</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKt3wcuC562TzGZ3c9TaWqGoYHsTQprMStrarcm2xX_v1hZPjze89wY-xq459DgHdTcZPPYECN5DUKUEPGEdLmWRqjzLT1kHgJepwhLP2UWM89bmWSY67GNkgtuZQOmDieSS97Vf-NVn8kKbYJatNLs6LGIyjftr36yN9U0d0jHFmLzV0Td-S8mQyM2MXfzV6lXySFtvKV6ys8osI10dtcumw8GkP0rHr0_P_ftxaoXiTVoUiFVuDWHFKbfWzaDIQSKKQvFZJZxCICmlQ8dN5YgXskRJypDkFWQcu-z2sLsO9feGYqPn9Sas2pdayFwoCQrKNgWHlA11jIEqvQ7-y4QfzUHvGeqWod4z1EeGbeXmUPFE9B9v90SZIf4C05xs1A</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kwon, Dongseok</creator><creator>Woo, Sung Yun</creator><creator>Bae, Jong-Ho</creator><creator>Lim, Suhwan</creator><creator>Park, Byung-Gook</creator><creator>Lee, Jong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0002-1786-7132</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid><orcidid>https://orcid.org/0000-0003-3578-5488</orcidid><orcidid>https://orcid.org/0000-0002-0857-3183</orcidid></search><sort><creationdate>20210901</creationdate><title>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</title><author>Kwon, Dongseok ; Woo, Sung Yun ; Bae, Jong-Ho ; Lim, Suhwan ; Park, Byung-Gook ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Biological neural networks</topic><topic>Capacitors</topic><topic>Electric potential</topic><topic>Hardware</topic><topic>Leaky integrate and fire (LIF) neuron</topic><topic>Membrane potentials</topic><topic>Micromechanical devices</topic><topic>Neural networks</topic><topic>neuromorphic</topic><topic>Neurons</topic><topic>Positive feedback</topic><topic>positive feedback (PF) devices</topic><topic>Signal processing</topic><topic>Spiking</topic><topic>spiking neural networks (SNNs)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Dongseok</creatorcontrib><creatorcontrib>Woo, Sung Yun</creatorcontrib><creatorcontrib>Bae, Jong-Ho</creatorcontrib><creatorcontrib>Lim, Suhwan</creatorcontrib><creatorcontrib>Park, Byung-Gook</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Dongseok</au><au>Woo, Sung Yun</au><au>Bae, Jong-Ho</au><au>Lim, Suhwan</au><au>Park, Byung-Gook</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>4766</spage><epage>4772</epage><pages>4766-4772</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, hardware-based spiking neural networks (SNNs) using capacitor-less positive feedback (PF) neuron devices are designed. It was reported that the PF device can simultaneously process the excitatory and inhibitory signals. The PF device shows very steep subthreshold slope (SS &lt; 1 mV/dec) due to the PF opertaion, leading to low-power and reliable neuron device. The PF devices also show the behavior of leaky integrate and fire (LIF) neuron, which is the most popular neuron model in SNNs. For hardware configuration, the neuron characteristics of PF device are investigated with the transient behavior of the anode current. Based on the PF neuron devices, the SNN shows the accuracy of 98.19% for the Modified National Institute of Standards and Technology (MNIST) database classification in four-hidden layer, fully-connected neural network, which is near the accuracy (98.46%) of the artificial neural networks using rectified linear unit (ReLU) activation function.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3098503</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3559-9802</orcidid><orcidid>https://orcid.org/0000-0001-7676-8938</orcidid><orcidid>https://orcid.org/0000-0002-1786-7132</orcidid><orcidid>https://orcid.org/0000-0002-2962-2458</orcidid><orcidid>https://orcid.org/0000-0003-3578-5488</orcidid><orcidid>https://orcid.org/0000-0002-0857-3183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-09, Vol.68 (9), p.4766-4772
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3098503
source IEEE Electronic Library (IEL) Journals
subjects Anodes
Biological neural networks
Capacitors
Electric potential
Hardware
Leaky integrate and fire (LIF) neuron
Membrane potentials
Micromechanical devices
Neural networks
neuromorphic
Neurons
Positive feedback
positive feedback (PF) devices
Signal processing
Spiking
spiking neural networks (SNNs)
Training
title Hardware-Based Spiking Neural Networks Using Capacitor-Less Positive Feedback Neuron Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware-Based%20Spiking%20Neural%20Networks%20Using%20Capacitor-Less%20Positive%20Feedback%20Neuron%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kwon,%20Dongseok&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=4766&rft.epage=4772&rft.pages=4766-4772&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3098503&rft_dat=%3Cproquest_cross%3E2562950908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7733f6cae3f1e6ccdb07605332791bf2d930e555d3d1afde175835e9ae51f0413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562950908&rft_id=info:pmid/&rft_ieee_id=9502843&rfr_iscdi=true