Loading…

A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge

In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpent...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2021-10, Vol.68 (10), p.5155-5161
Main Authors: Xu, Wei, Wang, Xiaoyi, Pan, Xiaofang, Bermak, Amine, Lee, Yi-Kuen, Yang, Yatao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433
cites cdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433
container_end_page 5161
container_issue 10
container_start_page 5155
container_title IEEE transactions on electron devices
container_volume 68
creator Xu, Wei
Wang, Xiaoyi
Pan, Xiaofang
Bermak, Amine
Lee, Yi-Kuen
Yang, Yatao
description In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 { {\mu }}\text{m} . For the vacuum range of 5\times 10^{-{4}} -760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as 2.6\times 10^{-{4}} Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.
doi_str_mv 10.1109/TED.2021.3103486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3103486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9513470</ieee_id><sourcerecordid>2575130325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562TTJJNjqXWKrS00KrHkI2zZWu_zHYF_72RFk_DwPO-MzyM3XLocQ72YTF87AkQvIccUBp9xjpcqSK3Wupz1gHgJrdo8JJdNc0qrVpK0WGyn737imI-pm9aZzMfPv2SPrLBZDrPJsPJPJvV0W_r7M2Htt1kI98u6ZpdVH7d0M1pdtnr03AxeM7H09HLoD_Og7D8kCMvFKdSao0ylGgsF4UVuixReQgi2IoUVkYoLk0BAKVIb5EyJihfConYZffH3n3cfbXUHNxq18ZtOumESt0IKFSi4EiFuGuaSJXbx3rj44_j4P7cuOTG_blxJzcpcneM1ET0j9vUKAvAXy6cWr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575130325</pqid></control><display><type>article</type><title>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</title><source>IEEE Xplore (Online service)</source><creator>Xu, Wei ; Wang, Xiaoyi ; Pan, Xiaofang ; Bermak, Amine ; Lee, Yi-Kuen ; Yang, Yatao</creator><creatorcontrib>Xu, Wei ; Wang, Xiaoyi ; Pan, Xiaofang ; Bermak, Amine ; Lee, Yi-Kuen ; Yang, Yatao</creatorcontrib><description><![CDATA[In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 <inline-formula> <tex-math notation="LaTeX">{ {\mu }}\text{m} </tex-math></inline-formula>. For the vacuum range of <inline-formula> <tex-math notation="LaTeX">5\times 10^{-{4}} </tex-math></inline-formula>-760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as <inline-formula> <tex-math notation="LaTeX">2.6\times 10^{-{4}} </tex-math></inline-formula> Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3103486</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; CMOS ; CMOS MEMS ; Internet of Things ; Microelectromechanical systems ; Micromechanical devices ; Pirani ; Pirani gages ; Resistance ; Sensors ; Silicon ; Temperature measurement ; Temperature sensors ; Thermal conductivity ; thermistor ; Thermistors ; Vacuum gages ; vacuum gauge ; wafer-level packaged ; Wiring</subject><ispartof>IEEE transactions on electron devices, 2021-10, Vol.68 (10), p.5155-5161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</citedby><cites>FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</cites><orcidid>0000-0003-1289-389X ; 0000-0002-7473-4344 ; 0000-0001-6196-3693 ; 0000-0003-0934-6967 ; 0000-0002-6286-3085 ; 0000-0003-4984-6093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9513470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><creatorcontrib>Pan, Xiaofang</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><creatorcontrib>Lee, Yi-Kuen</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><title>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 <inline-formula> <tex-math notation="LaTeX">{ {\mu }}\text{m} </tex-math></inline-formula>. For the vacuum range of <inline-formula> <tex-math notation="LaTeX">5\times 10^{-{4}} </tex-math></inline-formula>-760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as <inline-formula> <tex-math notation="LaTeX">2.6\times 10^{-{4}} </tex-math></inline-formula> Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.]]></description><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS MEMS</subject><subject>Internet of Things</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Pirani</subject><subject>Pirani gages</subject><subject>Resistance</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermal conductivity</subject><subject>thermistor</subject><subject>Thermistors</subject><subject>Vacuum gages</subject><subject>vacuum gauge</subject><subject>wafer-level packaged</subject><subject>Wiring</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562TTJJNjqXWKrS00KrHkI2zZWu_zHYF_72RFk_DwPO-MzyM3XLocQ72YTF87AkQvIccUBp9xjpcqSK3Wupz1gHgJrdo8JJdNc0qrVpK0WGyn737imI-pm9aZzMfPv2SPrLBZDrPJsPJPJvV0W_r7M2Htt1kI98u6ZpdVH7d0M1pdtnr03AxeM7H09HLoD_Og7D8kCMvFKdSao0ylGgsF4UVuixReQgi2IoUVkYoLk0BAKVIb5EyJihfConYZffH3n3cfbXUHNxq18ZtOumESt0IKFSi4EiFuGuaSJXbx3rj44_j4P7cuOTG_blxJzcpcneM1ET0j9vUKAvAXy6cWr0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Xu, Wei</creator><creator>Wang, Xiaoyi</creator><creator>Pan, Xiaofang</creator><creator>Bermak, Amine</creator><creator>Lee, Yi-Kuen</creator><creator>Yang, Yatao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1289-389X</orcidid><orcidid>https://orcid.org/0000-0002-7473-4344</orcidid><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0003-0934-6967</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0003-4984-6093</orcidid></search><sort><creationdate>20211001</creationdate><title>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</title><author>Xu, Wei ; Wang, Xiaoyi ; Pan, Xiaofang ; Bermak, Amine ; Lee, Yi-Kuen ; Yang, Yatao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS MEMS</topic><topic>Internet of Things</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Pirani</topic><topic>Pirani gages</topic><topic>Resistance</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermal conductivity</topic><topic>thermistor</topic><topic>Thermistors</topic><topic>Vacuum gages</topic><topic>vacuum gauge</topic><topic>wafer-level packaged</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><creatorcontrib>Pan, Xiaofang</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><creatorcontrib>Lee, Yi-Kuen</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wei</au><au>Wang, Xiaoyi</au><au>Pan, Xiaofang</au><au>Bermak, Amine</au><au>Lee, Yi-Kuen</au><au>Yang, Yatao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>68</volume><issue>10</issue><spage>5155</spage><epage>5161</epage><pages>5155-5161</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 <inline-formula> <tex-math notation="LaTeX">{ {\mu }}\text{m} </tex-math></inline-formula>. For the vacuum range of <inline-formula> <tex-math notation="LaTeX">5\times 10^{-{4}} </tex-math></inline-formula>-760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as <inline-formula> <tex-math notation="LaTeX">2.6\times 10^{-{4}} </tex-math></inline-formula> Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3103486</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1289-389X</orcidid><orcidid>https://orcid.org/0000-0002-7473-4344</orcidid><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0003-0934-6967</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0003-4984-6093</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-10, Vol.68 (10), p.5155-5161
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3103486
source IEEE Xplore (Online service)
subjects Circuits
CMOS
CMOS MEMS
Internet of Things
Microelectromechanical systems
Micromechanical devices
Pirani
Pirani gages
Resistance
Sensors
Silicon
Temperature measurement
Temperature sensors
Thermal conductivity
thermistor
Thermistors
Vacuum gages
vacuum gauge
wafer-level packaged
Wiring
title A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wafer-Level%20Packaged%20CMOS%20MEMS%20Pirani%20Vacuum%20Gauge&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Xu,%20Wei&rft.date=2021-10-01&rft.volume=68&rft.issue=10&rft.spage=5155&rft.epage=5161&rft.pages=5155-5161&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3103486&rft_dat=%3Cproquest_cross%3E2575130325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575130325&rft_id=info:pmid/&rft_ieee_id=9513470&rfr_iscdi=true