Loading…
A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge
In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpent...
Saved in:
Published in: | IEEE transactions on electron devices 2021-10, Vol.68 (10), p.5155-5161 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433 |
container_end_page | 5161 |
container_issue | 10 |
container_start_page | 5155 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Xu, Wei Wang, Xiaoyi Pan, Xiaofang Bermak, Amine Lee, Yi-Kuen Yang, Yatao |
description | In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 { {\mu }}\text{m} . For the vacuum range of 5\times 10^{-{4}} -760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as 2.6\times 10^{-{4}} Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry. |
doi_str_mv | 10.1109/TED.2021.3103486 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3103486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9513470</ieee_id><sourcerecordid>2575130325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562TTJJNjqXWKrS00KrHkI2zZWu_zHYF_72RFk_DwPO-MzyM3XLocQ72YTF87AkQvIccUBp9xjpcqSK3Wupz1gHgJrdo8JJdNc0qrVpK0WGyn737imI-pm9aZzMfPv2SPrLBZDrPJsPJPJvV0W_r7M2Htt1kI98u6ZpdVH7d0M1pdtnr03AxeM7H09HLoD_Og7D8kCMvFKdSao0ylGgsF4UVuixReQgi2IoUVkYoLk0BAKVIb5EyJihfConYZffH3n3cfbXUHNxq18ZtOumESt0IKFSi4EiFuGuaSJXbx3rj44_j4P7cuOTG_blxJzcpcneM1ET0j9vUKAvAXy6cWr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575130325</pqid></control><display><type>article</type><title>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</title><source>IEEE Xplore (Online service)</source><creator>Xu, Wei ; Wang, Xiaoyi ; Pan, Xiaofang ; Bermak, Amine ; Lee, Yi-Kuen ; Yang, Yatao</creator><creatorcontrib>Xu, Wei ; Wang, Xiaoyi ; Pan, Xiaofang ; Bermak, Amine ; Lee, Yi-Kuen ; Yang, Yatao</creatorcontrib><description><![CDATA[In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 <inline-formula> <tex-math notation="LaTeX">{ {\mu }}\text{m} </tex-math></inline-formula>. For the vacuum range of <inline-formula> <tex-math notation="LaTeX">5\times 10^{-{4}} </tex-math></inline-formula>-760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as <inline-formula> <tex-math notation="LaTeX">2.6\times 10^{-{4}} </tex-math></inline-formula> Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3103486</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; CMOS ; CMOS MEMS ; Internet of Things ; Microelectromechanical systems ; Micromechanical devices ; Pirani ; Pirani gages ; Resistance ; Sensors ; Silicon ; Temperature measurement ; Temperature sensors ; Thermal conductivity ; thermistor ; Thermistors ; Vacuum gages ; vacuum gauge ; wafer-level packaged ; Wiring</subject><ispartof>IEEE transactions on electron devices, 2021-10, Vol.68 (10), p.5155-5161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</citedby><cites>FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</cites><orcidid>0000-0003-1289-389X ; 0000-0002-7473-4344 ; 0000-0001-6196-3693 ; 0000-0003-0934-6967 ; 0000-0002-6286-3085 ; 0000-0003-4984-6093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9513470$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><creatorcontrib>Pan, Xiaofang</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><creatorcontrib>Lee, Yi-Kuen</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><title>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 <inline-formula> <tex-math notation="LaTeX">{ {\mu }}\text{m} </tex-math></inline-formula>. For the vacuum range of <inline-formula> <tex-math notation="LaTeX">5\times 10^{-{4}} </tex-math></inline-formula>-760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as <inline-formula> <tex-math notation="LaTeX">2.6\times 10^{-{4}} </tex-math></inline-formula> Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.]]></description><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS MEMS</subject><subject>Internet of Things</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Pirani</subject><subject>Pirani gages</subject><subject>Resistance</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermal conductivity</subject><subject>thermistor</subject><subject>Thermistors</subject><subject>Vacuum gages</subject><subject>vacuum gauge</subject><subject>wafer-level packaged</subject><subject>Wiring</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562TTJJNjqXWKrS00KrHkI2zZWu_zHYF_72RFk_DwPO-MzyM3XLocQ72YTF87AkQvIccUBp9xjpcqSK3Wupz1gHgJrdo8JJdNc0qrVpK0WGyn737imI-pm9aZzMfPv2SPrLBZDrPJsPJPJvV0W_r7M2Htt1kI98u6ZpdVH7d0M1pdtnr03AxeM7H09HLoD_Og7D8kCMvFKdSao0ylGgsF4UVuixReQgi2IoUVkYoLk0BAKVIb5EyJihfConYZffH3n3cfbXUHNxq18ZtOumESt0IKFSi4EiFuGuaSJXbx3rj44_j4P7cuOTG_blxJzcpcneM1ET0j9vUKAvAXy6cWr0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Xu, Wei</creator><creator>Wang, Xiaoyi</creator><creator>Pan, Xiaofang</creator><creator>Bermak, Amine</creator><creator>Lee, Yi-Kuen</creator><creator>Yang, Yatao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1289-389X</orcidid><orcidid>https://orcid.org/0000-0002-7473-4344</orcidid><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0003-0934-6967</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0003-4984-6093</orcidid></search><sort><creationdate>20211001</creationdate><title>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</title><author>Xu, Wei ; Wang, Xiaoyi ; Pan, Xiaofang ; Bermak, Amine ; Lee, Yi-Kuen ; Yang, Yatao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS MEMS</topic><topic>Internet of Things</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Pirani</topic><topic>Pirani gages</topic><topic>Resistance</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermal conductivity</topic><topic>thermistor</topic><topic>Thermistors</topic><topic>Vacuum gages</topic><topic>vacuum gauge</topic><topic>wafer-level packaged</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><creatorcontrib>Pan, Xiaofang</creatorcontrib><creatorcontrib>Bermak, Amine</creatorcontrib><creatorcontrib>Lee, Yi-Kuen</creatorcontrib><creatorcontrib>Yang, Yatao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wei</au><au>Wang, Xiaoyi</au><au>Pan, Xiaofang</au><au>Bermak, Amine</au><au>Lee, Yi-Kuen</au><au>Yang, Yatao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>68</volume><issue>10</issue><spage>5155</spage><epage>5161</epage><pages>5155-5161</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this article, we report a wafer-level packaged Pirani vacuum gauge using the proprietary InvenSense CMOS MEMS technology. The micro Pirani vacuum gauge features three serpentine-shaped molybdenum thermistors on the suspended silicon-on-insulator (SOI) bridges, while the wiring gap of each serpentine-shaped silicon microbridge is 1.6 <inline-formula> <tex-math notation="LaTeX">{ {\mu }}\text{m} </tex-math></inline-formula>. For the vacuum range of <inline-formula> <tex-math notation="LaTeX">5\times 10^{-{4}} </tex-math></inline-formula>-760 Torr, the CMOS MEMS Pirani gauge configured with a constant temperature interface circuit achieves a sensitivity of 0.414 V/Torr in a very fine vacuum regime, while its heating power is less than 21.3 mW. Moreover, the measured output of the micro Pirani gauge shows good agreement with a semi-empirical model, while the model predicts that the proposed Pirani gauge can measure a vacuum pressure as low as <inline-formula> <tex-math notation="LaTeX">2.6\times 10^{-{4}} </tex-math></inline-formula> Torr. The performance achieved by this Pirani vacuum gauge combined with its high level of integration makes it a promising Internet of Things (IoT) sensing node for vacuum monitoring in the industry.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3103486</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1289-389X</orcidid><orcidid>https://orcid.org/0000-0002-7473-4344</orcidid><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0003-0934-6967</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0003-4984-6093</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-10, Vol.68 (10), p.5155-5161 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2021_3103486 |
source | IEEE Xplore (Online service) |
subjects | Circuits CMOS CMOS MEMS Internet of Things Microelectromechanical systems Micromechanical devices Pirani Pirani gages Resistance Sensors Silicon Temperature measurement Temperature sensors Thermal conductivity thermistor Thermistors Vacuum gages vacuum gauge wafer-level packaged Wiring |
title | A Wafer-Level Packaged CMOS MEMS Pirani Vacuum Gauge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wafer-Level%20Packaged%20CMOS%20MEMS%20Pirani%20Vacuum%20Gauge&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Xu,%20Wei&rft.date=2021-10-01&rft.volume=68&rft.issue=10&rft.spage=5155&rft.epage=5161&rft.pages=5155-5161&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3103486&rft_dat=%3Cproquest_cross%3E2575130325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-31751eb46634cb389127926bb35a0c2c9fe53f8251487000b2001e588c5ab2433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575130325&rft_id=info:pmid/&rft_ieee_id=9513470&rfr_iscdi=true |