Loading…

Effects of Proton Irradiation on GaN Vacuum Electron Nanodiodes

Gallium nitride (GaN)-based nanoscale vacuum electron devices, which offer advantages of both traditional vacuum tube operation and modern solid-state technology, are attractive for radiation-hard applications due to the inherent radiation hardness of vacuum electron devices and the high radiation t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2024-01, Vol.71 (1), p.827-832
Main Authors: Sapkota, Keshab R., Vizkelethy, Gyorgy, Burns, George R., Wang, George T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gallium nitride (GaN)-based nanoscale vacuum electron devices, which offer advantages of both traditional vacuum tube operation and modern solid-state technology, are attractive for radiation-hard applications due to the inherent radiation hardness of vacuum electron devices and the high radiation tolerance of GaN. Here, we investigate the radiation hardness of top-down fabricated n-GaN nanoscale vacuum electron diodes (NVEDs) irradiated with 2.5-MeV protons (p) at various doses. We observe a slight decrease in forward current and a slight increase in reverse leakage current as a function of cumulative protons fluence due to a dopant compensation effect. The NVEDs overall show excellent radiation hardness with no major change in electrical characteristics up to a cumulative fluence of 5E14 p/cm2, which is significantly higher than the existing state-of-the-art radiation-hardened devices to our knowledge. The results show promise for a new class of GaN-based nanoscale vacuum electron devices for use in harsh radiation environments and space applications.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2023.3330458