Loading…
Design, Characterization, and Application of Fast, Broadband, High-Dynamic Range, Three-Axis Field Strength Probes
Conventional field strength sensors use different detection methods, each having advantages and disadvantages. Modern signals in, for instance, wireless communication systems and radars use very complex modulation. Other signals, such as the ones often measured in reverberation chambers with mode st...
Saved in:
Published in: | IEEE transactions on electromagnetic compatibility 2013-12, Vol.55 (6), p.1007-1014 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional field strength sensors use different detection methods, each having advantages and disadvantages. Modern signals in, for instance, wireless communication systems and radars use very complex modulation. Other signals, such as the ones often measured in reverberation chambers with mode stirring, are fast-varying with high dynamic range. Conventional probes struggle to give reliable measurement data in these situations, while the more expensive solutions based on optical-electric conversion and heterodyne receiver, are so costly that often only one component of the field is measured. The impact of conventional field strength probes when measuring (complex) modulated signals is discussed. Furthermore, this paper describes the design, fabrication, and characterization of fast, broadband, three-axis, and high-dynamic range probes. They have been designed for mapping the fast-changing electric field strength in complex electromagnetic environments such as reverberation chambers under mode-stirring operation. |
---|---|
ISSN: | 0018-9375 1558-187X |
DOI: | 10.1109/TEMC.2013.2256361 |