Loading…

Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials

This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC metho...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electromagnetic compatibility 2020-06, Vol.62 (3), p.870-879
Main Authors: Romano, Daniele, Kovacevic-Badstubner, Ivana, Parise, Mauro, Grossner, Ulrike, Ekman, Jonas, Antonini, Giulio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703
cites cdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703
container_end_page 879
container_issue 3
container_start_page 870
container_title IEEE transactions on electromagnetic compatibility
container_volume 62
creator Romano, Daniele
Kovacevic-Badstubner, Ivana
Parise, Mauro
Grossner, Ulrike
Ekman, Jonas
Antonini, Giulio
description This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.
doi_str_mv 10.1109/TEMC.2019.2919759
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2019_2919759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8747405</ieee_id><sourcerecordid>2414533770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</originalsourceid><addsrcrecordid>eNo9kVtr3DAQhUVJoZttf0Dpi6Cv661kWZb1GJzNBbI0pGnpm5Dl8aLgWBtdUppfHzkb9unMgW8OwxyEvlKyppTIH_ebbbsuCZXrUlIpuPyAFpTzpqCN-HuCFoTQppBM8E_oNISHbCtesgV6ubM7510KuDf4lxtTtG7CbsC32kerR7wZ4RGmiDdPyT7rcR5b602yEW9dD2PA15MZU2-nHW7d1CcT7TOs8LmFEUz01qywnnq81bsJojV5iOBzcviMPg5Z4Mu7LtHvi819e1Xc_Ly8bs9uCsMYiQV0NdVA5UBKWrOK14JxU2erBzBgjOx4LzPQDHWliWaG0V4MtOuqpjREELZEq0Nu-Af71Km9t4_a_1dOW3Vu_5wp53dqjEkJXsoZ_37A9949JQhRPbjkp3yhKqv8NcbEWyg9UMa7EDwMx1hK1NyImhtRcyPqvZG88-2wYwHgyDeiEhXh7BX37Ylc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533770</pqid></control><display><type>article</type><title>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</title><source>IEEE Xplore (Online service)</source><creator>Romano, Daniele ; Kovacevic-Badstubner, Ivana ; Parise, Mauro ; Grossner, Ulrike ; Ekman, Jonas ; Antonini, Giulio</creator><creatorcontrib>Romano, Daniele ; Kovacevic-Badstubner, Ivana ; Parise, Mauro ; Grossner, Ulrike ; Ekman, Jonas ; Antonini, Giulio</creatorcontrib><description>This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.</description><identifier>ISSN: 0018-9375</identifier><identifier>ISSN: 1558-187X</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2019.2919759</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution ; Computer simulation ; Conductors ; dc solution ; Dielectrics ; Electronic systems ; Elektroniksystem ; Equivalent circuits ; Fast Fourier transformations ; Finite element method ; Fourier transforms ; Impulse response ; Integrated circuit modeling ; Magnetic materials ; Mathematical model ; Maxwell's equations ; Method of moments ; Nonlinear programming ; partial element equivalent circuit (PEEC) method ; Well posed problems]]></subject><ispartof>IEEE transactions on electromagnetic compatibility, 2020-06, Vol.62 (3), p.870-879</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</citedby><cites>FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</cites><orcidid>0000-0001-6960-2470 ; 0000-0002-5479-7794 ; 0000-0001-5267-7740 ; 0000-0003-4160-214X ; 0000-0001-5433-6173 ; 0000-0002-2495-8550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8747405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75290$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Romano, Daniele</creatorcontrib><creatorcontrib>Kovacevic-Badstubner, Ivana</creatorcontrib><creatorcontrib>Parise, Mauro</creatorcontrib><creatorcontrib>Grossner, Ulrike</creatorcontrib><creatorcontrib>Ekman, Jonas</creatorcontrib><creatorcontrib>Antonini, Giulio</creatorcontrib><title>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution]]></subject><subject>Computer simulation</subject><subject>Conductors</subject><subject>dc solution</subject><subject>Dielectrics</subject><subject>Electronic systems</subject><subject>Elektroniksystem</subject><subject>Equivalent circuits</subject><subject>Fast Fourier transformations</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Impulse response</subject><subject>Integrated circuit modeling</subject><subject>Magnetic materials</subject><subject>Mathematical model</subject><subject>Maxwell's equations</subject><subject>Method of moments</subject><subject>Nonlinear programming</subject><subject>partial element equivalent circuit (PEEC) method</subject><subject>Well posed problems</subject><issn>0018-9375</issn><issn>1558-187X</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kVtr3DAQhUVJoZttf0Dpi6Cv661kWZb1GJzNBbI0pGnpm5Dl8aLgWBtdUppfHzkb9unMgW8OwxyEvlKyppTIH_ebbbsuCZXrUlIpuPyAFpTzpqCN-HuCFoTQppBM8E_oNISHbCtesgV6ubM7510KuDf4lxtTtG7CbsC32kerR7wZ4RGmiDdPyT7rcR5b602yEW9dD2PA15MZU2-nHW7d1CcT7TOs8LmFEUz01qywnnq81bsJojV5iOBzcviMPg5Z4Mu7LtHvi819e1Xc_Ly8bs9uCsMYiQV0NdVA5UBKWrOK14JxU2erBzBgjOx4LzPQDHWliWaG0V4MtOuqpjREELZEq0Nu-Af71Km9t4_a_1dOW3Vu_5wp53dqjEkJXsoZ_37A9949JQhRPbjkp3yhKqv8NcbEWyg9UMa7EDwMx1hK1NyImhtRcyPqvZG88-2wYwHgyDeiEhXh7BX37Ylc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Romano, Daniele</creator><creator>Kovacevic-Badstubner, Ivana</creator><creator>Parise, Mauro</creator><creator>Grossner, Ulrike</creator><creator>Ekman, Jonas</creator><creator>Antonini, Giulio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-6960-2470</orcidid><orcidid>https://orcid.org/0000-0002-5479-7794</orcidid><orcidid>https://orcid.org/0000-0001-5267-7740</orcidid><orcidid>https://orcid.org/0000-0003-4160-214X</orcidid><orcidid>https://orcid.org/0000-0001-5433-6173</orcidid><orcidid>https://orcid.org/0000-0002-2495-8550</orcidid></search><sort><creationdate>20200601</creationdate><title>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</title><author>Romano, Daniele ; Kovacevic-Badstubner, Ivana ; Parise, Mauro ; Grossner, Ulrike ; Ekman, Jonas ; Antonini, Giulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution]]></topic><topic>Computer simulation</topic><topic>Conductors</topic><topic>dc solution</topic><topic>Dielectrics</topic><topic>Electronic systems</topic><topic>Elektroniksystem</topic><topic>Equivalent circuits</topic><topic>Fast Fourier transformations</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Impulse response</topic><topic>Integrated circuit modeling</topic><topic>Magnetic materials</topic><topic>Mathematical model</topic><topic>Maxwell's equations</topic><topic>Method of moments</topic><topic>Nonlinear programming</topic><topic>partial element equivalent circuit (PEEC) method</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Daniele</creatorcontrib><creatorcontrib>Kovacevic-Badstubner, Ivana</creatorcontrib><creatorcontrib>Parise, Mauro</creatorcontrib><creatorcontrib>Grossner, Ulrike</creatorcontrib><creatorcontrib>Ekman, Jonas</creatorcontrib><creatorcontrib>Antonini, Giulio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Daniele</au><au>Kovacevic-Badstubner, Ivana</au><au>Parise, Mauro</au><au>Grossner, Ulrike</au><au>Ekman, Jonas</au><au>Antonini, Giulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>62</volume><issue>3</issue><spage>870</spage><epage>879</epage><pages>870-879</pages><issn>0018-9375</issn><issn>1558-187X</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2019.2919759</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6960-2470</orcidid><orcidid>https://orcid.org/0000-0002-5479-7794</orcidid><orcidid>https://orcid.org/0000-0001-5267-7740</orcidid><orcidid>https://orcid.org/0000-0003-4160-214X</orcidid><orcidid>https://orcid.org/0000-0001-5433-6173</orcidid><orcidid>https://orcid.org/0000-0002-2495-8550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2020-06, Vol.62 (3), p.870-879
issn 0018-9375
1558-187X
1558-187X
language eng
recordid cdi_crossref_primary_10_1109_TEMC_2019_2919759
source IEEE Xplore (Online service)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution
Computer simulation
Conductors
dc solution
Dielectrics
Electronic systems
Elektroniksystem
Equivalent circuits
Fast Fourier transformations
Finite element method
Fourier transforms
Impulse response
Integrated circuit modeling
Magnetic materials
Mathematical model
Maxwell's equations
Method of moments
Nonlinear programming
partial element equivalent circuit (PEEC) method
Well posed problems
title Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20dc%20Solution%20of%20Partial%20Element%20Equivalent%20Circuit%20Models%20Including%20Conductive,%20Dielectric,%20and%20Magnetic%20Materials&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Romano,%20Daniele&rft.date=2020-06-01&rft.volume=62&rft.issue=3&rft.spage=870&rft.epage=879&rft.pages=870-879&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2019.2919759&rft_dat=%3Cproquest_cross%3E2414533770%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414533770&rft_id=info:pmid/&rft_ieee_id=8747405&rfr_iscdi=true