Loading…
Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials
This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC metho...
Saved in:
Published in: | IEEE transactions on electromagnetic compatibility 2020-06, Vol.62 (3), p.870-879 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703 |
container_end_page | 879 |
container_issue | 3 |
container_start_page | 870 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 62 |
creator | Romano, Daniele Kovacevic-Badstubner, Ivana Parise, Mauro Grossner, Ulrike Ekman, Jonas Antonini, Giulio |
description | This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation. |
doi_str_mv | 10.1109/TEMC.2019.2919759 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2019_2919759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8747405</ieee_id><sourcerecordid>2414533770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</originalsourceid><addsrcrecordid>eNo9kVtr3DAQhUVJoZttf0Dpi6Cv661kWZb1GJzNBbI0pGnpm5Dl8aLgWBtdUppfHzkb9unMgW8OwxyEvlKyppTIH_ebbbsuCZXrUlIpuPyAFpTzpqCN-HuCFoTQppBM8E_oNISHbCtesgV6ubM7510KuDf4lxtTtG7CbsC32kerR7wZ4RGmiDdPyT7rcR5b602yEW9dD2PA15MZU2-nHW7d1CcT7TOs8LmFEUz01qywnnq81bsJojV5iOBzcviMPg5Z4Mu7LtHvi819e1Xc_Ly8bs9uCsMYiQV0NdVA5UBKWrOK14JxU2erBzBgjOx4LzPQDHWliWaG0V4MtOuqpjREELZEq0Nu-Af71Km9t4_a_1dOW3Vu_5wp53dqjEkJXsoZ_37A9949JQhRPbjkp3yhKqv8NcbEWyg9UMa7EDwMx1hK1NyImhtRcyPqvZG88-2wYwHgyDeiEhXh7BX37Ylc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414533770</pqid></control><display><type>article</type><title>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</title><source>IEEE Xplore (Online service)</source><creator>Romano, Daniele ; Kovacevic-Badstubner, Ivana ; Parise, Mauro ; Grossner, Ulrike ; Ekman, Jonas ; Antonini, Giulio</creator><creatorcontrib>Romano, Daniele ; Kovacevic-Badstubner, Ivana ; Parise, Mauro ; Grossner, Ulrike ; Ekman, Jonas ; Antonini, Giulio</creatorcontrib><description>This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.</description><identifier>ISSN: 0018-9375</identifier><identifier>ISSN: 1558-187X</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2019.2919759</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution ; Computer simulation ; Conductors ; dc solution ; Dielectrics ; Electronic systems ; Elektroniksystem ; Equivalent circuits ; Fast Fourier transformations ; Finite element method ; Fourier transforms ; Impulse response ; Integrated circuit modeling ; Magnetic materials ; Mathematical model ; Maxwell's equations ; Method of moments ; Nonlinear programming ; partial element equivalent circuit (PEEC) method ; Well posed problems]]></subject><ispartof>IEEE transactions on electromagnetic compatibility, 2020-06, Vol.62 (3), p.870-879</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</citedby><cites>FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</cites><orcidid>0000-0001-6960-2470 ; 0000-0002-5479-7794 ; 0000-0001-5267-7740 ; 0000-0003-4160-214X ; 0000-0001-5433-6173 ; 0000-0002-2495-8550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8747405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75290$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Romano, Daniele</creatorcontrib><creatorcontrib>Kovacevic-Badstubner, Ivana</creatorcontrib><creatorcontrib>Parise, Mauro</creatorcontrib><creatorcontrib>Grossner, Ulrike</creatorcontrib><creatorcontrib>Ekman, Jonas</creatorcontrib><creatorcontrib>Antonini, Giulio</creatorcontrib><title>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution]]></subject><subject>Computer simulation</subject><subject>Conductors</subject><subject>dc solution</subject><subject>Dielectrics</subject><subject>Electronic systems</subject><subject>Elektroniksystem</subject><subject>Equivalent circuits</subject><subject>Fast Fourier transformations</subject><subject>Finite element method</subject><subject>Fourier transforms</subject><subject>Impulse response</subject><subject>Integrated circuit modeling</subject><subject>Magnetic materials</subject><subject>Mathematical model</subject><subject>Maxwell's equations</subject><subject>Method of moments</subject><subject>Nonlinear programming</subject><subject>partial element equivalent circuit (PEEC) method</subject><subject>Well posed problems</subject><issn>0018-9375</issn><issn>1558-187X</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kVtr3DAQhUVJoZttf0Dpi6Cv661kWZb1GJzNBbI0pGnpm5Dl8aLgWBtdUppfHzkb9unMgW8OwxyEvlKyppTIH_ebbbsuCZXrUlIpuPyAFpTzpqCN-HuCFoTQppBM8E_oNISHbCtesgV6ubM7510KuDf4lxtTtG7CbsC32kerR7wZ4RGmiDdPyT7rcR5b602yEW9dD2PA15MZU2-nHW7d1CcT7TOs8LmFEUz01qywnnq81bsJojV5iOBzcviMPg5Z4Mu7LtHvi819e1Xc_Ly8bs9uCsMYiQV0NdVA5UBKWrOK14JxU2erBzBgjOx4LzPQDHWliWaG0V4MtOuqpjREELZEq0Nu-Af71Km9t4_a_1dOW3Vu_5wp53dqjEkJXsoZ_37A9949JQhRPbjkp3yhKqv8NcbEWyg9UMa7EDwMx1hK1NyImhtRcyPqvZG88-2wYwHgyDeiEhXh7BX37Ylc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Romano, Daniele</creator><creator>Kovacevic-Badstubner, Ivana</creator><creator>Parise, Mauro</creator><creator>Grossner, Ulrike</creator><creator>Ekman, Jonas</creator><creator>Antonini, Giulio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-6960-2470</orcidid><orcidid>https://orcid.org/0000-0002-5479-7794</orcidid><orcidid>https://orcid.org/0000-0001-5267-7740</orcidid><orcidid>https://orcid.org/0000-0003-4160-214X</orcidid><orcidid>https://orcid.org/0000-0001-5433-6173</orcidid><orcidid>https://orcid.org/0000-0002-2495-8550</orcidid></search><sort><creationdate>20200601</creationdate><title>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</title><author>Romano, Daniele ; Kovacevic-Badstubner, Ivana ; Parise, Mauro ; Grossner, Ulrike ; Ekman, Jonas ; Antonini, Giulio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution]]></topic><topic>Computer simulation</topic><topic>Conductors</topic><topic>dc solution</topic><topic>Dielectrics</topic><topic>Electronic systems</topic><topic>Elektroniksystem</topic><topic>Equivalent circuits</topic><topic>Fast Fourier transformations</topic><topic>Finite element method</topic><topic>Fourier transforms</topic><topic>Impulse response</topic><topic>Integrated circuit modeling</topic><topic>Magnetic materials</topic><topic>Mathematical model</topic><topic>Maxwell's equations</topic><topic>Method of moments</topic><topic>Nonlinear programming</topic><topic>partial element equivalent circuit (PEEC) method</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Daniele</creatorcontrib><creatorcontrib>Kovacevic-Badstubner, Ivana</creatorcontrib><creatorcontrib>Parise, Mauro</creatorcontrib><creatorcontrib>Grossner, Ulrike</creatorcontrib><creatorcontrib>Ekman, Jonas</creatorcontrib><creatorcontrib>Antonini, Giulio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Daniele</au><au>Kovacevic-Badstubner, Ivana</au><au>Parise, Mauro</au><au>Grossner, Ulrike</au><au>Ekman, Jonas</au><au>Antonini, Giulio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>62</volume><issue>3</issue><spage>870</spage><epage>879</epage><pages>870-879</pages><issn>0018-9375</issn><issn>1558-187X</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This paper presents a rigorous derivation of the dc solution of three-dimensional partial element equivalent circuit (PEEC) formulation extended to include simultaneously conductive, dielectric, and magnetic materials. The circuit interpretation of Maxwell's equations provided by the PEEC method allows to reformulate the dc modeling task in such a way that physical phenomena are fully exploited. Indeed, since the displacements currents are identically zero in dielectrics, Kirchhoff's current law is enforced in terms of charge conservation internally to dielectrics or at the interface between dielectrics and other materials. A well-posed problem is achieved by adding the charges as new unknowns and identifying the disconnected objects. Two numerical examples are presented demonstrating the accuracy of the proposed method when compared to the dc solution as extracted by the fast Fourier transform of the impulse response and a finite element method simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2019.2919759</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6960-2470</orcidid><orcidid>https://orcid.org/0000-0002-5479-7794</orcidid><orcidid>https://orcid.org/0000-0001-5267-7740</orcidid><orcidid>https://orcid.org/0000-0003-4160-214X</orcidid><orcidid>https://orcid.org/0000-0001-5433-6173</orcidid><orcidid>https://orcid.org/0000-0002-2495-8550</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2020-06, Vol.62 (3), p.870-879 |
issn | 0018-9375 1558-187X 1558-187X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEMC_2019_2919759 |
source | IEEE Xplore (Online service) |
subjects | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> dc</tex-math> </inline-formula> </named-content> solution Computer simulation Conductors dc solution Dielectrics Electronic systems Elektroniksystem Equivalent circuits Fast Fourier transformations Finite element method Fourier transforms Impulse response Integrated circuit modeling Magnetic materials Mathematical model Maxwell's equations Method of moments Nonlinear programming partial element equivalent circuit (PEEC) method Well posed problems |
title | Rigorous dc Solution of Partial Element Equivalent Circuit Models Including Conductive, Dielectric, and Magnetic Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20dc%20Solution%20of%20Partial%20Element%20Equivalent%20Circuit%20Models%20Including%20Conductive,%20Dielectric,%20and%20Magnetic%20Materials&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Romano,%20Daniele&rft.date=2020-06-01&rft.volume=62&rft.issue=3&rft.spage=870&rft.epage=879&rft.pages=870-879&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2019.2919759&rft_dat=%3Cproquest_cross%3E2414533770%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-eb61ae19f02163456735c69f0afececc9b5d9ae18f64a0a3c31d7f1bb482c0703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414533770&rft_id=info:pmid/&rft_ieee_id=8747405&rfr_iscdi=true |