Loading…

A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure

System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on engineering management 2020-02, Vol.67 (1), p.42-53
Main Authors: Dowd, Zeynep, Franz, Anna Y., Wasek, James S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753
cites cdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753
container_end_page 53
container_issue 1
container_start_page 42
container_title IEEE transactions on engineering management
container_volume 67
creator Dowd, Zeynep
Franz, Anna Y.
Wasek, James S.
description System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.
doi_str_mv 10.1109/TEM.2018.2870326
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEM_2018_2870326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8488498</ieee_id><sourcerecordid>2345513963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bHazx1JbFbp4qVdDNjuRbW1Sk11E_3pTtngaZt578-CH0C0lM0pJ9bBZ1jNGqJwxWRLOijM0oULIjJCcnKMJSVJW8YpeoqsYt2nNBSMT9D7Hj2C62HmX1XrXuQ-8CnoP3z7ssPUB17pzPTjtDGDtWlz7FoLrfnWfIthbvAnaxYMP_Xh5cTbo2IfB9EOAa3Rh9WeEm9OcorfVcrN4ztavTy-L-ToznPE-o1VpLDDTNLTMORhoCshtKaFtheWalS3lDRHSFgXNGxClzKUVzNKSi4qWgk_R_fj3EPzXALFXWz8ElyoV47kQlFcFTy4yukzwMQaw6hC6vQ4_ihJ1pKgSRXWkqE4UU-RujHQA8G9P9TKvJP8DzY1uuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345513963</pqid></control><display><type>article</type><title>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</title><source>IEEE Xplore (Online service)</source><creator>Dowd, Zeynep ; Franz, Anna Y. ; Wasek, James S.</creator><creatorcontrib>Dowd, Zeynep ; Franz, Anna Y. ; Wasek, James S.</creatorcontrib><description>System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2018.2870326</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Algorithms ; Asset management ; Bayes methods ; Bayesian analysis ; Decision making ; Indexes ; Infrastructure ; Inland waterways ; Machine learning ; Maintenance ; maintenance and modernization ; Maintenance engineering ; Modernization ; Network analysis ; project selection ; Resource management ; system availability ; Transportation ; Transportation engineering</subject><ispartof>IEEE transactions on engineering management, 2020-02, Vol.67 (1), p.42-53</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</citedby><cites>FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</cites><orcidid>0000-0001-5555-3671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8488498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dowd, Zeynep</creatorcontrib><creatorcontrib>Franz, Anna Y.</creatorcontrib><creatorcontrib>Wasek, James S.</creatorcontrib><title>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Asset management</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Decision making</subject><subject>Indexes</subject><subject>Infrastructure</subject><subject>Inland waterways</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>maintenance and modernization</subject><subject>Maintenance engineering</subject><subject>Modernization</subject><subject>Network analysis</subject><subject>project selection</subject><subject>Resource management</subject><subject>system availability</subject><subject>Transportation</subject><subject>Transportation engineering</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bHazx1JbFbp4qVdDNjuRbW1Sk11E_3pTtngaZt578-CH0C0lM0pJ9bBZ1jNGqJwxWRLOijM0oULIjJCcnKMJSVJW8YpeoqsYt2nNBSMT9D7Hj2C62HmX1XrXuQ-8CnoP3z7ssPUB17pzPTjtDGDtWlz7FoLrfnWfIthbvAnaxYMP_Xh5cTbo2IfB9EOAa3Rh9WeEm9OcorfVcrN4ztavTy-L-ToznPE-o1VpLDDTNLTMORhoCshtKaFtheWalS3lDRHSFgXNGxClzKUVzNKSi4qWgk_R_fj3EPzXALFXWz8ElyoV47kQlFcFTy4yukzwMQaw6hC6vQ4_ihJ1pKgSRXWkqE4UU-RujHQA8G9P9TKvJP8DzY1uuQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Dowd, Zeynep</creator><creator>Franz, Anna Y.</creator><creator>Wasek, James S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5555-3671</orcidid></search><sort><creationdate>20200201</creationdate><title>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</title><author>Dowd, Zeynep ; Franz, Anna Y. ; Wasek, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Asset management</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Decision making</topic><topic>Indexes</topic><topic>Infrastructure</topic><topic>Inland waterways</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>maintenance and modernization</topic><topic>Maintenance engineering</topic><topic>Modernization</topic><topic>Network analysis</topic><topic>project selection</topic><topic>Resource management</topic><topic>system availability</topic><topic>Transportation</topic><topic>Transportation engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowd, Zeynep</creatorcontrib><creatorcontrib>Franz, Anna Y.</creatorcontrib><creatorcontrib>Wasek, James S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowd, Zeynep</au><au>Franz, Anna Y.</au><au>Wasek, James S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>42</spage><epage>53</epage><pages>42-53</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2018.2870326</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5555-3671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 2020-02, Vol.67 (1), p.42-53
issn 0018-9391
1558-0040
language eng
recordid cdi_crossref_primary_10_1109_TEM_2018_2870326
source IEEE Xplore (Online service)
subjects Aging
Algorithms
Asset management
Bayes methods
Bayesian analysis
Decision making
Indexes
Infrastructure
Inland waterways
Machine learning
Maintenance
maintenance and modernization
Maintenance engineering
Modernization
Network analysis
project selection
Resource management
system availability
Transportation
Transportation engineering
title A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision-Making%20Framework%20for%20Maintenance%20and%20Modernization%20of%20Transportation%20Infrastructure&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Dowd,%20Zeynep&rft.date=2020-02-01&rft.volume=67&rft.issue=1&rft.spage=42&rft.epage=53&rft.pages=42-53&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2018.2870326&rft_dat=%3Cproquest_cross%3E2345513963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2345513963&rft_id=info:pmid/&rft_ieee_id=8488498&rfr_iscdi=true