Loading…
A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure
System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current...
Saved in:
Published in: | IEEE transactions on engineering management 2020-02, Vol.67 (1), p.42-53 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753 |
container_end_page | 53 |
container_issue | 1 |
container_start_page | 42 |
container_title | IEEE transactions on engineering management |
container_volume | 67 |
creator | Dowd, Zeynep Franz, Anna Y. Wasek, James S. |
description | System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality. |
doi_str_mv | 10.1109/TEM.2018.2870326 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEM_2018_2870326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8488498</ieee_id><sourcerecordid>2345513963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bHazx1JbFbp4qVdDNjuRbW1Sk11E_3pTtngaZt578-CH0C0lM0pJ9bBZ1jNGqJwxWRLOijM0oULIjJCcnKMJSVJW8YpeoqsYt2nNBSMT9D7Hj2C62HmX1XrXuQ-8CnoP3z7ssPUB17pzPTjtDGDtWlz7FoLrfnWfIthbvAnaxYMP_Xh5cTbo2IfB9EOAa3Rh9WeEm9OcorfVcrN4ztavTy-L-ToznPE-o1VpLDDTNLTMORhoCshtKaFtheWalS3lDRHSFgXNGxClzKUVzNKSi4qWgk_R_fj3EPzXALFXWz8ElyoV47kQlFcFTy4yukzwMQaw6hC6vQ4_ihJ1pKgSRXWkqE4UU-RujHQA8G9P9TKvJP8DzY1uuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345513963</pqid></control><display><type>article</type><title>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</title><source>IEEE Xplore (Online service)</source><creator>Dowd, Zeynep ; Franz, Anna Y. ; Wasek, James S.</creator><creatorcontrib>Dowd, Zeynep ; Franz, Anna Y. ; Wasek, James S.</creatorcontrib><description>System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2018.2870326</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aging ; Algorithms ; Asset management ; Bayes methods ; Bayesian analysis ; Decision making ; Indexes ; Infrastructure ; Inland waterways ; Machine learning ; Maintenance ; maintenance and modernization ; Maintenance engineering ; Modernization ; Network analysis ; project selection ; Resource management ; system availability ; Transportation ; Transportation engineering</subject><ispartof>IEEE transactions on engineering management, 2020-02, Vol.67 (1), p.42-53</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</citedby><cites>FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</cites><orcidid>0000-0001-5555-3671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8488498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dowd, Zeynep</creatorcontrib><creatorcontrib>Franz, Anna Y.</creatorcontrib><creatorcontrib>Wasek, James S.</creatorcontrib><title>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.</description><subject>Aging</subject><subject>Algorithms</subject><subject>Asset management</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Decision making</subject><subject>Indexes</subject><subject>Infrastructure</subject><subject>Inland waterways</subject><subject>Machine learning</subject><subject>Maintenance</subject><subject>maintenance and modernization</subject><subject>Maintenance engineering</subject><subject>Modernization</subject><subject>Network analysis</subject><subject>project selection</subject><subject>Resource management</subject><subject>system availability</subject><subject>Transportation</subject><subject>Transportation engineering</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z8bHazx1JbFbp4qVdDNjuRbW1Sk11E_3pTtngaZt578-CH0C0lM0pJ9bBZ1jNGqJwxWRLOijM0oULIjJCcnKMJSVJW8YpeoqsYt2nNBSMT9D7Hj2C62HmX1XrXuQ-8CnoP3z7ssPUB17pzPTjtDGDtWlz7FoLrfnWfIthbvAnaxYMP_Xh5cTbo2IfB9EOAa3Rh9WeEm9OcorfVcrN4ztavTy-L-ToznPE-o1VpLDDTNLTMORhoCshtKaFtheWalS3lDRHSFgXNGxClzKUVzNKSi4qWgk_R_fj3EPzXALFXWz8ElyoV47kQlFcFTy4yukzwMQaw6hC6vQ4_ihJ1pKgSRXWkqE4UU-RujHQA8G9P9TKvJP8DzY1uuQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Dowd, Zeynep</creator><creator>Franz, Anna Y.</creator><creator>Wasek, James S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5555-3671</orcidid></search><sort><creationdate>20200201</creationdate><title>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</title><author>Dowd, Zeynep ; Franz, Anna Y. ; Wasek, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Algorithms</topic><topic>Asset management</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Decision making</topic><topic>Indexes</topic><topic>Infrastructure</topic><topic>Inland waterways</topic><topic>Machine learning</topic><topic>Maintenance</topic><topic>maintenance and modernization</topic><topic>Maintenance engineering</topic><topic>Modernization</topic><topic>Network analysis</topic><topic>project selection</topic><topic>Resource management</topic><topic>system availability</topic><topic>Transportation</topic><topic>Transportation engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowd, Zeynep</creatorcontrib><creatorcontrib>Franz, Anna Y.</creatorcontrib><creatorcontrib>Wasek, James S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowd, Zeynep</au><au>Franz, Anna Y.</au><au>Wasek, James S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>42</spage><epage>53</epage><pages>42-53</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>System availability for aging transportation infrastructure decreases in the absence of maintenance and modernization activities. This degradation is compounded when coupled with the growing backlog of needs and limited resources, making prioritization of these activities a complex problem. Current decision-making techniques utilized to solve this complex problem lack a holistic approach, objectivity, and topological aspect. To address these shortcomings, this research proposes a new comprehensive decision-making framework for maintenance and modernization of aging transportation infrastructure. The framework first employs a systems thinking approach to identify impact factors, then conducts a complex network analysis to assess the location criticality of each component within the system, and finally applies an innovative Bayesian network structure learning method to eliminate subjective judgment and reduce the drawbacks of currently available learning algorithms when using real-world data. The robustness of the proposed framework is demonstrated via a case study for inland waterways. Analysis of the results confirm the prioritization determined by utilizing the proposed framework optimizes system availability. This framework provides decision makers with an index number representing the need for maintenance and modernization of each project and a prioritized list in terms of essentiality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2018.2870326</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5555-3671</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9391 |
ispartof | IEEE transactions on engineering management, 2020-02, Vol.67 (1), p.42-53 |
issn | 0018-9391 1558-0040 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEM_2018_2870326 |
source | IEEE Xplore (Online service) |
subjects | Aging Algorithms Asset management Bayes methods Bayesian analysis Decision making Indexes Infrastructure Inland waterways Machine learning Maintenance maintenance and modernization Maintenance engineering Modernization Network analysis project selection Resource management system availability Transportation Transportation engineering |
title | A Decision-Making Framework for Maintenance and Modernization of Transportation Infrastructure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision-Making%20Framework%20for%20Maintenance%20and%20Modernization%20of%20Transportation%20Infrastructure&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Dowd,%20Zeynep&rft.date=2020-02-01&rft.volume=67&rft.issue=1&rft.spage=42&rft.epage=53&rft.pages=42-53&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2018.2870326&rft_dat=%3Cproquest_cross%3E2345513963%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-197cfe2cbb1743eceb6e4f78edd5f3a27d13b058f6614be57848f52f173591753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2345513963&rft_id=info:pmid/&rft_ieee_id=8488498&rfr_iscdi=true |