Loading…
Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer
A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of th...
Saved in:
Published in: | IEEE transactions on electronics packaging manufacturing 2004-01, Vol.27 (1), p.59-66 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3 |
container_end_page | 66 |
container_issue | 1 |
container_start_page | 59 |
container_title | IEEE transactions on electronics packaging manufacturing |
container_volume | 27 |
creator | Sheng Liu Ume, I.C. Achari, A. |
description | A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect. |
doi_str_mv | 10.1109/TEPM.2004.830515 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEPM_2004_830515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331576</ieee_id><sourcerecordid>29179810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</originalsourceid><addsrcrecordid>eNqN0U1rHSEUBuChpNAkzb6QjQTarubWj_FrWZK0DaQ0i7voThxHEy9enahDyb-vww0EsihdiAd8zgHP23UfENwgBOWX7fXdzw2GcNgIAimib7pjRKnoocD4aK0x6gkZfr_rTkrZQYgGivFxl6-ss6YWMOtabY4gW5Puo68-ReBSBi74uTcPfgYlhclmsEs-VvC46ODrE_CxzK1_1X98fQBBl2aWULMuaYkT0O3cxDba2Zz2thXvu7dOh2LPnu_Tbvvtenv5o7_99f3m8uttbwaEay-Nk5MbhcSEETzgkesJcYPZwJjFo5g0p4xSrYVhg4FkRMxQAUWzlvKRnHafD2PnnB4XW6ra-2JsCDratBQlJENCtmU1-emfEkvEpUD_Aduu-cBkgxev4C4tObbfKiGIwIijFcEDMjmVkq1Tc_Z7nZ8UgmrNVK2ZqjVTdci0tXx8nquL0cFlHY0vL30MCi4wa-784Ly19uWZEEQ5I38B4_yrOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883821719</pqid></control><display><type>article</type><title>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sheng Liu ; Ume, I.C. ; Achari, A.</creator><creatorcontrib>Sheng Liu ; Ume, I.C. ; Achari, A.</creatorcontrib><description>A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.</description><identifier>ISSN: 1521-334X</identifier><identifier>EISSN: 1558-0822</identifier><identifier>DOI: 10.1109/TEPM.2004.830515</identifier><identifier>CODEN: ITEPFL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Classification algorithms ; Clustering algorithms ; Electric, optical and optoelectronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Flip chip solder joints ; Frequency ; Image processing ; Information, signal and communications theory ; Inspection ; Neural networks ; Pattern recognition ; Performance analysis ; Signal processing ; Telecommunications and information theory ; Testing, measurement, noise and reliability ; Ultrasonic imaging</subject><ispartof>IEEE transactions on electronics packaging manufacturing, 2004-01, Vol.27 (1), p.59-66</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</citedby><cites>FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16087826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheng Liu</creatorcontrib><creatorcontrib>Ume, I.C.</creatorcontrib><creatorcontrib>Achari, A.</creatorcontrib><title>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</title><title>IEEE transactions on electronics packaging manufacturing</title><addtitle>TEPM</addtitle><description>A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flip chip solder joints</subject><subject>Frequency</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Inspection</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Performance analysis</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Testing, measurement, noise and reliability</subject><subject>Ultrasonic imaging</subject><issn>1521-334X</issn><issn>1558-0822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqN0U1rHSEUBuChpNAkzb6QjQTarubWj_FrWZK0DaQ0i7voThxHEy9enahDyb-vww0EsihdiAd8zgHP23UfENwgBOWX7fXdzw2GcNgIAimib7pjRKnoocD4aK0x6gkZfr_rTkrZQYgGivFxl6-ss6YWMOtabY4gW5Puo68-ReBSBi74uTcPfgYlhclmsEs-VvC46ODrE_CxzK1_1X98fQBBl2aWULMuaYkT0O3cxDba2Zz2thXvu7dOh2LPnu_Tbvvtenv5o7_99f3m8uttbwaEay-Nk5MbhcSEETzgkesJcYPZwJjFo5g0p4xSrYVhg4FkRMxQAUWzlvKRnHafD2PnnB4XW6ra-2JsCDratBQlJENCtmU1-emfEkvEpUD_Aduu-cBkgxev4C4tObbfKiGIwIijFcEDMjmVkq1Tc_Z7nZ8UgmrNVK2ZqjVTdci0tXx8nquL0cFlHY0vL30MCi4wa-784Ly19uWZEEQ5I38B4_yrOg</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Sheng Liu</creator><creator>Ume, I.C.</creator><creator>Achari, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>200401</creationdate><title>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</title><author>Sheng Liu ; Ume, I.C. ; Achari, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flip chip solder joints</topic><topic>Frequency</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Inspection</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Performance analysis</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Testing, measurement, noise and reliability</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Sheng Liu</creatorcontrib><creatorcontrib>Ume, I.C.</creatorcontrib><creatorcontrib>Achari, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng Liu</au><au>Ume, I.C.</au><au>Achari, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</atitle><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle><stitle>TEPM</stitle><date>2004-01</date><risdate>2004</risdate><volume>27</volume><issue>1</issue><spage>59</spage><epage>66</epage><pages>59-66</pages><issn>1521-334X</issn><eissn>1558-0822</eissn><coden>ITEPFL</coden><abstract>A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEPM.2004.830515</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1521-334X |
ispartof | IEEE transactions on electronics packaging manufacturing, 2004-01, Vol.27 (1), p.59-66 |
issn | 1521-334X 1558-0822 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEPM_2004_830515 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Applied sciences Classification algorithms Clustering algorithms Electric, optical and optoelectronic circuits Electronic equipment and fabrication. Passive components, printed wiring boards, connectics Electronics Exact sciences and technology Flip chip solder joints Frequency Image processing Information, signal and communications theory Inspection Neural networks Pattern recognition Performance analysis Signal processing Telecommunications and information theory Testing, measurement, noise and reliability Ultrasonic imaging |
title | Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20pattern%20recognition%20for%20flip-chip%20solder%20joint%20quality%20inspection%20with%20laser%20ultrasound%20and%20Interferometer&rft.jtitle=IEEE%20transactions%20on%20electronics%20packaging%20manufacturing&rft.au=Sheng%20Liu&rft.date=2004-01&rft.volume=27&rft.issue=1&rft.spage=59&rft.epage=66&rft.pages=59-66&rft.issn=1521-334X&rft.eissn=1558-0822&rft.coden=ITEPFL&rft_id=info:doi/10.1109/TEPM.2004.830515&rft_dat=%3Cproquest_cross%3E29179810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883821719&rft_id=info:pmid/&rft_ieee_id=1331576&rfr_iscdi=true |