Loading…

Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer

A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electronics packaging manufacturing 2004-01, Vol.27 (1), p.59-66
Main Authors: Sheng Liu, Ume, I.C., Achari, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3
cites cdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3
container_end_page 66
container_issue 1
container_start_page 59
container_title IEEE transactions on electronics packaging manufacturing
container_volume 27
creator Sheng Liu
Ume, I.C.
Achari, A.
description A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.
doi_str_mv 10.1109/TEPM.2004.830515
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEPM_2004_830515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1331576</ieee_id><sourcerecordid>29179810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</originalsourceid><addsrcrecordid>eNqN0U1rHSEUBuChpNAkzb6QjQTarubWj_FrWZK0DaQ0i7voThxHEy9enahDyb-vww0EsihdiAd8zgHP23UfENwgBOWX7fXdzw2GcNgIAimib7pjRKnoocD4aK0x6gkZfr_rTkrZQYgGivFxl6-ss6YWMOtabY4gW5Puo68-ReBSBi74uTcPfgYlhclmsEs-VvC46ODrE_CxzK1_1X98fQBBl2aWULMuaYkT0O3cxDba2Zz2thXvu7dOh2LPnu_Tbvvtenv5o7_99f3m8uttbwaEay-Nk5MbhcSEETzgkesJcYPZwJjFo5g0p4xSrYVhg4FkRMxQAUWzlvKRnHafD2PnnB4XW6ra-2JsCDratBQlJENCtmU1-emfEkvEpUD_Aduu-cBkgxev4C4tObbfKiGIwIijFcEDMjmVkq1Tc_Z7nZ8UgmrNVK2ZqjVTdci0tXx8nquL0cFlHY0vL30MCi4wa-784Ly19uWZEEQ5I38B4_yrOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883821719</pqid></control><display><type>article</type><title>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sheng Liu ; Ume, I.C. ; Achari, A.</creator><creatorcontrib>Sheng Liu ; Ume, I.C. ; Achari, A.</creatorcontrib><description>A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.</description><identifier>ISSN: 1521-334X</identifier><identifier>EISSN: 1558-0822</identifier><identifier>DOI: 10.1109/TEPM.2004.830515</identifier><identifier>CODEN: ITEPFL</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Classification algorithms ; Clustering algorithms ; Electric, optical and optoelectronic circuits ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Flip chip solder joints ; Frequency ; Image processing ; Information, signal and communications theory ; Inspection ; Neural networks ; Pattern recognition ; Performance analysis ; Signal processing ; Telecommunications and information theory ; Testing, measurement, noise and reliability ; Ultrasonic imaging</subject><ispartof>IEEE transactions on electronics packaging manufacturing, 2004-01, Vol.27 (1), p.59-66</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</citedby><cites>FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1331576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16087826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheng Liu</creatorcontrib><creatorcontrib>Ume, I.C.</creatorcontrib><creatorcontrib>Achari, A.</creatorcontrib><title>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</title><title>IEEE transactions on electronics packaging manufacturing</title><addtitle>TEPM</addtitle><description>A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Flip chip solder joints</subject><subject>Frequency</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Inspection</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Performance analysis</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Testing, measurement, noise and reliability</subject><subject>Ultrasonic imaging</subject><issn>1521-334X</issn><issn>1558-0822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqN0U1rHSEUBuChpNAkzb6QjQTarubWj_FrWZK0DaQ0i7voThxHEy9enahDyb-vww0EsihdiAd8zgHP23UfENwgBOWX7fXdzw2GcNgIAimib7pjRKnoocD4aK0x6gkZfr_rTkrZQYgGivFxl6-ss6YWMOtabY4gW5Puo68-ReBSBi74uTcPfgYlhclmsEs-VvC46ODrE_CxzK1_1X98fQBBl2aWULMuaYkT0O3cxDba2Zz2thXvu7dOh2LPnu_Tbvvtenv5o7_99f3m8uttbwaEay-Nk5MbhcSEETzgkesJcYPZwJjFo5g0p4xSrYVhg4FkRMxQAUWzlvKRnHafD2PnnB4XW6ra-2JsCDratBQlJENCtmU1-emfEkvEpUD_Aduu-cBkgxev4C4tObbfKiGIwIijFcEDMjmVkq1Tc_Z7nZ8UgmrNVK2ZqjVTdci0tXx8nquL0cFlHY0vL30MCi4wa-784Ly19uWZEEQ5I38B4_yrOg</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Sheng Liu</creator><creator>Ume, I.C.</creator><creator>Achari, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>200401</creationdate><title>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</title><author>Sheng Liu ; Ume, I.C. ; Achari, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Flip chip solder joints</topic><topic>Frequency</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Inspection</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Performance analysis</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Testing, measurement, noise and reliability</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Sheng Liu</creatorcontrib><creatorcontrib>Ume, I.C.</creatorcontrib><creatorcontrib>Achari, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng Liu</au><au>Ume, I.C.</au><au>Achari, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer</atitle><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle><stitle>TEPM</stitle><date>2004-01</date><risdate>2004</risdate><volume>27</volume><issue>1</issue><spage>59</spage><epage>66</epage><pages>59-66</pages><issn>1521-334X</issn><eissn>1558-0822</eissn><coden>ITEPFL</coden><abstract>A defects pattern recognition system has been developed for the flip-chip solder joint quality inspection by using laser ultrasound and interferometric techniques. This system extracts error ratio and dominant frequency as features from ultrasound waveforms. It also performs a cluster analysis of those feature vectors by applying probabilistic neural network classification algorithm. The system can automatically classify chips into different clusters and can, therefore, find differences between good and bad chips, as well as classifying the type of defect.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEPM.2004.830515</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1521-334X
ispartof IEEE transactions on electronics packaging manufacturing, 2004-01, Vol.27 (1), p.59-66
issn 1521-334X
1558-0822
language eng
recordid cdi_crossref_primary_10_1109_TEPM_2004_830515
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Applied sciences
Classification algorithms
Clustering algorithms
Electric, optical and optoelectronic circuits
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Flip chip solder joints
Frequency
Image processing
Information, signal and communications theory
Inspection
Neural networks
Pattern recognition
Performance analysis
Signal processing
Telecommunications and information theory
Testing, measurement, noise and reliability
Ultrasonic imaging
title Defects pattern recognition for flip-chip solder joint quality inspection with laser ultrasound and Interferometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defects%20pattern%20recognition%20for%20flip-chip%20solder%20joint%20quality%20inspection%20with%20laser%20ultrasound%20and%20Interferometer&rft.jtitle=IEEE%20transactions%20on%20electronics%20packaging%20manufacturing&rft.au=Sheng%20Liu&rft.date=2004-01&rft.volume=27&rft.issue=1&rft.spage=59&rft.epage=66&rft.pages=59-66&rft.issn=1521-334X&rft.eissn=1558-0822&rft.coden=ITEPFL&rft_id=info:doi/10.1109/TEPM.2004.830515&rft_dat=%3Cproquest_cross%3E29179810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-9cf9dfb892363242b7ad17c26466e2b8da75655aa8c64c03b16c5808324e57b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883821719&rft_id=info:pmid/&rft_ieee_id=1331576&rfr_iscdi=true