Loading…
Matrix-Based Evolutionary Computation
Computational intelligence (CI), including artificial neural network, fuzzy logic, and evolutionary computation (EC), has rapidly developed nowadays. Especially, EC is a kind of algorithm for knowledge creation and problem solving, playing a significant role in CI and artificial intelligence (AI). H...
Saved in:
Published in: | IEEE transactions on emerging topics in computational intelligence 2022-04, Vol.6 (2), p.315-328 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computational intelligence (CI), including artificial neural network, fuzzy logic, and evolutionary computation (EC), has rapidly developed nowadays. Especially, EC is a kind of algorithm for knowledge creation and problem solving, playing a significant role in CI and artificial intelligence (AI). However, traditional EC algorithms have faced great challenge of heavy computational burden and long running time in large-scale (e.g., with many variables) problems. How to efficiently extend EC algorithms to solve complex problems has become one of the most significant research topics in CI and AI communities. To this aim, this paper proposes a matrix-based EC (MEC) framework to extend traditional EC algorithms for efficiently solving large-scale or super large-scale optimization problems. The proposed framework is an entirely new perspective on EC algorithm, from the solution representation to the evolutionary operators. In this framework, the whole population (containing a set of individuals) is defined as a matrix, where a row stands for an individual and a column stands for a dimension (decision variable). This way, the parallel computing functionalities of matrix can be directly and easily carried out on the high performance computing resources to accelerate the computational speed of evolutionary operators. This paper gives two typical examples of MEC algorithms, named matrix-based genetic algorithm and matrix-based particle swarm optimization. Their matrix-based solution representations are presented and the evolutionary operators based on the matrix are described. Moreover, the time complexity is analyzed and the experiments are conducted to show that these MEC algorithms are efficient in reducing the computational time on large scale of decision variables. The MEC is a promising way to extend EC to complex optimization problems in big data environment, leading to a new research direction in CI and AI. |
---|---|
ISSN: | 2471-285X 2471-285X |
DOI: | 10.1109/TETCI.2020.3047410 |