Loading…

Spatio-Temporal Hybrid Attentive Graph Network for Diagnosis of Mental Disorders on fMRI Time-Series Data

Facing the prevalence of mental disorders around the world, the burden of healthcare services becomes increasingly imminent. To lessen patients' suffering, the timely diagnosis and therapy of mental disorders are particularly essential. Functional magnetic resonance imaging (fMRI), as the de fa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence 2024-12, Vol.8 (6), p.4046-4058
Main Authors: Liu, Rui, Huang, Zhi-An, Hu, Yao, Huang, Lei, Wong, Ka-Chun, Tan, Kay Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c247t-76d9534d706c1d1398b388750289b2bfefbf5b093ee35b2f25a3cfac9f3b3a8d3
container_end_page 4058
container_issue 6
container_start_page 4046
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 8
creator Liu, Rui
Huang, Zhi-An
Hu, Yao
Huang, Lei
Wong, Ka-Chun
Tan, Kay Chen
description Facing the prevalence of mental disorders around the world, the burden of healthcare services becomes increasingly imminent. To lessen patients' suffering, the timely diagnosis and therapy of mental disorders are particularly essential. Functional magnetic resonance imaging (fMRI), as the de facto non-invasive neuroimaging technique, can effectively examine the spatial and temporal patterns of brain activity. Recently, computer-aided diagnosis (CAD) approaches have emerged to assist doctors in interpreting fMRI images. However, existing CAD methods cannot fully exploit the spatio-temporal dependence in fMRI signals, possibly leading to inaccurate diagnosis. In this study, we propose a spatio-temporal hybrid attentive graph network (ST-HAG) for diagnosing autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) from fMRI data. Specifically, a hybrid graph convolution network is developed to effectively capture complex spatio-temporal dynamics. Meanwhile, a Transformer-based self-attention module helps ST-HAG to extract the full-scale temporal correlation. Finally, we use a gated fusion unit to learn discriminative spatio-temporal graph representations for classification. Cross-validation experiments demonstrate that the proposed ST-HAG achieves state-of-the-art performance with a mean accuracy of 71.9% and 74.8% for ASD and ADHD on ABIDE (1035 subjects) and ADHD-200 (939 subjects) datasets, respectively. Moreover, thanks to the adopted dynamic graph attentive representation, the potent interpretability enables ST-HAG to detect the remarkable temporal association patterns among different brain regions based on dynamic functional connectivity networks.
doi_str_mv 10.1109/TETCI.2024.3386612
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETCI_2024_3386612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10502241</ieee_id><sourcerecordid>3131909080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-76d9534d706c1d1398b388750289b2bfefbf5b093ee35b2f25a3cfac9f3b3a8d3</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhejiQT5A8aLJl4P-7Fu6yUBBRLQRGbi3dJtp1qEdbZFw7-3CBdc9aR5n3PePFF0S_CQECweisdiPB9STJMhY3maEnoR9WiSkZjm_P3ybL6OBs6tMcZUcMJ40ov0qpNem7iAbWes3KDZvrK6QSPvofX6B9DUyu4TPYP_NfYLKWPRRMuP1jjtkFFoGWIBm2hnbAM2_LVILV_nqNBbiFdgNTg0kV7eRFdKbhwMTm8_ensKxWfx4mU6H48WcR1q-jhLG8FZ0mQ4rUlDmMgrlucZxzQXFa0UqErxCgsGwHhFFeWS1UrWQrGKybxh_ej-uLez5nsHzpdrs7NtOFkywojAAuc4pOgxVVvjnAVVdlZvpd2XBJcHq-W_1fJgtTxZDdDdEdIAcAaEcjQh7A-4znOx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131909080</pqid></control><display><type>article</type><title>Spatio-Temporal Hybrid Attentive Graph Network for Diagnosis of Mental Disorders on fMRI Time-Series Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Rui ; Huang, Zhi-An ; Hu, Yao ; Huang, Lei ; Wong, Ka-Chun ; Tan, Kay Chen</creator><creatorcontrib>Liu, Rui ; Huang, Zhi-An ; Hu, Yao ; Huang, Lei ; Wong, Ka-Chun ; Tan, Kay Chen</creatorcontrib><description>Facing the prevalence of mental disorders around the world, the burden of healthcare services becomes increasingly imminent. To lessen patients' suffering, the timely diagnosis and therapy of mental disorders are particularly essential. Functional magnetic resonance imaging (fMRI), as the de facto non-invasive neuroimaging technique, can effectively examine the spatial and temporal patterns of brain activity. Recently, computer-aided diagnosis (CAD) approaches have emerged to assist doctors in interpreting fMRI images. However, existing CAD methods cannot fully exploit the spatio-temporal dependence in fMRI signals, possibly leading to inaccurate diagnosis. In this study, we propose a spatio-temporal hybrid attentive graph network (ST-HAG) for diagnosing autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) from fMRI data. Specifically, a hybrid graph convolution network is developed to effectively capture complex spatio-temporal dynamics. Meanwhile, a Transformer-based self-attention module helps ST-HAG to extract the full-scale temporal correlation. Finally, we use a gated fusion unit to learn discriminative spatio-temporal graph representations for classification. Cross-validation experiments demonstrate that the proposed ST-HAG achieves state-of-the-art performance with a mean accuracy of 71.9% and 74.8% for ASD and ADHD on ABIDE (1035 subjects) and ADHD-200 (939 subjects) datasets, respectively. Moreover, thanks to the adopted dynamic graph attentive representation, the potent interpretability enables ST-HAG to detect the remarkable temporal association patterns among different brain regions based on dynamic functional connectivity networks.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2024.3386612</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention deficit hyperactivity disorder ; Autism ; autism spectrum disorder ; Brain ; brain graph construction ; Brain modeling ; CAD ; Computer aided design ; Computer aided diagnosis ; Correlation ; Diagnosis ; Functional magnetic resonance imaging ; graph learning ; Graph representations ; Graph theory ; Graphical models ; Graphical representations ; Magnetic resonance imaging ; Medical imaging ; Mental disorders ; Neuroimaging ; Spatiotemporal data ; Spatiotemporal phenomena ; Transformers ; Urban areas</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2024-12, Vol.8 (6), p.4046-4058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-76d9534d706c1d1398b388750289b2bfefbf5b093ee35b2f25a3cfac9f3b3a8d3</cites><orcidid>0000-0002-6802-2463 ; 0000-0002-5477-8753 ; 0000-0001-9974-148X ; 0000-0003-1926-3321 ; 0000-0003-2458-5149 ; 0000-0001-6062-733X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10502241$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Huang, Zhi-An</creatorcontrib><creatorcontrib>Hu, Yao</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Wong, Ka-Chun</creatorcontrib><creatorcontrib>Tan, Kay Chen</creatorcontrib><title>Spatio-Temporal Hybrid Attentive Graph Network for Diagnosis of Mental Disorders on fMRI Time-Series Data</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>Facing the prevalence of mental disorders around the world, the burden of healthcare services becomes increasingly imminent. To lessen patients' suffering, the timely diagnosis and therapy of mental disorders are particularly essential. Functional magnetic resonance imaging (fMRI), as the de facto non-invasive neuroimaging technique, can effectively examine the spatial and temporal patterns of brain activity. Recently, computer-aided diagnosis (CAD) approaches have emerged to assist doctors in interpreting fMRI images. However, existing CAD methods cannot fully exploit the spatio-temporal dependence in fMRI signals, possibly leading to inaccurate diagnosis. In this study, we propose a spatio-temporal hybrid attentive graph network (ST-HAG) for diagnosing autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) from fMRI data. Specifically, a hybrid graph convolution network is developed to effectively capture complex spatio-temporal dynamics. Meanwhile, a Transformer-based self-attention module helps ST-HAG to extract the full-scale temporal correlation. Finally, we use a gated fusion unit to learn discriminative spatio-temporal graph representations for classification. Cross-validation experiments demonstrate that the proposed ST-HAG achieves state-of-the-art performance with a mean accuracy of 71.9% and 74.8% for ASD and ADHD on ABIDE (1035 subjects) and ADHD-200 (939 subjects) datasets, respectively. Moreover, thanks to the adopted dynamic graph attentive representation, the potent interpretability enables ST-HAG to detect the remarkable temporal association patterns among different brain regions based on dynamic functional connectivity networks.</description><subject>Attention deficit hyperactivity disorder</subject><subject>Autism</subject><subject>autism spectrum disorder</subject><subject>Brain</subject><subject>brain graph construction</subject><subject>Brain modeling</subject><subject>CAD</subject><subject>Computer aided design</subject><subject>Computer aided diagnosis</subject><subject>Correlation</subject><subject>Diagnosis</subject><subject>Functional magnetic resonance imaging</subject><subject>graph learning</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical models</subject><subject>Graphical representations</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Mental disorders</subject><subject>Neuroimaging</subject><subject>Spatiotemporal data</subject><subject>Spatiotemporal phenomena</subject><subject>Transformers</subject><subject>Urban areas</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhejiQT5A8aLJl4P-7Fu6yUBBRLQRGbi3dJtp1qEdbZFw7-3CBdc9aR5n3PePFF0S_CQECweisdiPB9STJMhY3maEnoR9WiSkZjm_P3ybL6OBs6tMcZUcMJ40ov0qpNem7iAbWes3KDZvrK6QSPvofX6B9DUyu4TPYP_NfYLKWPRRMuP1jjtkFFoGWIBm2hnbAM2_LVILV_nqNBbiFdgNTg0kV7eRFdKbhwMTm8_ensKxWfx4mU6H48WcR1q-jhLG8FZ0mQ4rUlDmMgrlucZxzQXFa0UqErxCgsGwHhFFeWS1UrWQrGKybxh_ej-uLez5nsHzpdrs7NtOFkywojAAuc4pOgxVVvjnAVVdlZvpd2XBJcHq-W_1fJgtTxZDdDdEdIAcAaEcjQh7A-4znOx</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liu, Rui</creator><creator>Huang, Zhi-An</creator><creator>Hu, Yao</creator><creator>Huang, Lei</creator><creator>Wong, Ka-Chun</creator><creator>Tan, Kay Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6802-2463</orcidid><orcidid>https://orcid.org/0000-0002-5477-8753</orcidid><orcidid>https://orcid.org/0000-0001-9974-148X</orcidid><orcidid>https://orcid.org/0000-0003-1926-3321</orcidid><orcidid>https://orcid.org/0000-0003-2458-5149</orcidid><orcidid>https://orcid.org/0000-0001-6062-733X</orcidid></search><sort><creationdate>202412</creationdate><title>Spatio-Temporal Hybrid Attentive Graph Network for Diagnosis of Mental Disorders on fMRI Time-Series Data</title><author>Liu, Rui ; Huang, Zhi-An ; Hu, Yao ; Huang, Lei ; Wong, Ka-Chun ; Tan, Kay Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-76d9534d706c1d1398b388750289b2bfefbf5b093ee35b2f25a3cfac9f3b3a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention deficit hyperactivity disorder</topic><topic>Autism</topic><topic>autism spectrum disorder</topic><topic>Brain</topic><topic>brain graph construction</topic><topic>Brain modeling</topic><topic>CAD</topic><topic>Computer aided design</topic><topic>Computer aided diagnosis</topic><topic>Correlation</topic><topic>Diagnosis</topic><topic>Functional magnetic resonance imaging</topic><topic>graph learning</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical models</topic><topic>Graphical representations</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Mental disorders</topic><topic>Neuroimaging</topic><topic>Spatiotemporal data</topic><topic>Spatiotemporal phenomena</topic><topic>Transformers</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Huang, Zhi-An</creatorcontrib><creatorcontrib>Hu, Yao</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Wong, Ka-Chun</creatorcontrib><creatorcontrib>Tan, Kay Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Rui</au><au>Huang, Zhi-An</au><au>Hu, Yao</au><au>Huang, Lei</au><au>Wong, Ka-Chun</au><au>Tan, Kay Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Hybrid Attentive Graph Network for Diagnosis of Mental Disorders on fMRI Time-Series Data</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2024-12</date><risdate>2024</risdate><volume>8</volume><issue>6</issue><spage>4046</spage><epage>4058</epage><pages>4046-4058</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>Facing the prevalence of mental disorders around the world, the burden of healthcare services becomes increasingly imminent. To lessen patients' suffering, the timely diagnosis and therapy of mental disorders are particularly essential. Functional magnetic resonance imaging (fMRI), as the de facto non-invasive neuroimaging technique, can effectively examine the spatial and temporal patterns of brain activity. Recently, computer-aided diagnosis (CAD) approaches have emerged to assist doctors in interpreting fMRI images. However, existing CAD methods cannot fully exploit the spatio-temporal dependence in fMRI signals, possibly leading to inaccurate diagnosis. In this study, we propose a spatio-temporal hybrid attentive graph network (ST-HAG) for diagnosing autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) from fMRI data. Specifically, a hybrid graph convolution network is developed to effectively capture complex spatio-temporal dynamics. Meanwhile, a Transformer-based self-attention module helps ST-HAG to extract the full-scale temporal correlation. Finally, we use a gated fusion unit to learn discriminative spatio-temporal graph representations for classification. Cross-validation experiments demonstrate that the proposed ST-HAG achieves state-of-the-art performance with a mean accuracy of 71.9% and 74.8% for ASD and ADHD on ABIDE (1035 subjects) and ADHD-200 (939 subjects) datasets, respectively. Moreover, thanks to the adopted dynamic graph attentive representation, the potent interpretability enables ST-HAG to detect the remarkable temporal association patterns among different brain regions based on dynamic functional connectivity networks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2024.3386612</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6802-2463</orcidid><orcidid>https://orcid.org/0000-0002-5477-8753</orcidid><orcidid>https://orcid.org/0000-0001-9974-148X</orcidid><orcidid>https://orcid.org/0000-0003-1926-3321</orcidid><orcidid>https://orcid.org/0000-0003-2458-5149</orcidid><orcidid>https://orcid.org/0000-0001-6062-733X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2024-12, Vol.8 (6), p.4046-4058
issn 2471-285X
2471-285X
language eng
recordid cdi_crossref_primary_10_1109_TETCI_2024_3386612
source IEEE Electronic Library (IEL) Journals
subjects Attention deficit hyperactivity disorder
Autism
autism spectrum disorder
Brain
brain graph construction
Brain modeling
CAD
Computer aided design
Computer aided diagnosis
Correlation
Diagnosis
Functional magnetic resonance imaging
graph learning
Graph representations
Graph theory
Graphical models
Graphical representations
Magnetic resonance imaging
Medical imaging
Mental disorders
Neuroimaging
Spatiotemporal data
Spatiotemporal phenomena
Transformers
Urban areas
title Spatio-Temporal Hybrid Attentive Graph Network for Diagnosis of Mental Disorders on fMRI Time-Series Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Hybrid%20Attentive%20Graph%20Network%20for%20Diagnosis%20of%20Mental%20Disorders%20on%20fMRI%20Time-Series%20Data&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Liu,%20Rui&rft.date=2024-12&rft.volume=8&rft.issue=6&rft.spage=4046&rft.epage=4058&rft.pages=4046-4058&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2024.3386612&rft_dat=%3Cproquest_cross%3E3131909080%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-76d9534d706c1d1398b388750289b2bfefbf5b093ee35b2f25a3cfac9f3b3a8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3131909080&rft_id=info:pmid/&rft_ieee_id=10502241&rfr_iscdi=true