Loading…
Cost Minimization for Big Data Processing in Geo-Distributed Data Centers
The explosive growth of demands on big data processing imposes a heavy burden on computation, storage, and communication in data centers, which hence incurs considerable operational expenditure to data center providers. Therefore, cost minimization has become an emergent issue for the upcoming big d...
Saved in:
Published in: | IEEE transactions on emerging topics in computing 2014-09, Vol.2 (3), p.314-323 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103 |
---|---|
cites | cdi_FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103 |
container_end_page | 323 |
container_issue | 3 |
container_start_page | 314 |
container_title | IEEE transactions on emerging topics in computing |
container_volume | 2 |
creator | Gu, Lin Zeng, Deze Li, Peng Guo, Song |
description | The explosive growth of demands on big data processing imposes a heavy burden on computation, storage, and communication in data centers, which hence incurs considerable operational expenditure to data center providers. Therefore, cost minimization has become an emergent issue for the upcoming big data era. Different from conventional cloud services, one of the main features of big data services is the tight coupling between data and computation as computation tasks can be conducted only when the corresponding data are available. As a result, three factors, i.e., task assignment, data placement, and data movement, deeply influence the operational expenditure of data centers. In this paper, we are motivated to study the cost minimization problem via a joint optimization of these three factors for big data services in geo-distributed data centers. To describe the task completion time with the consideration of both data transmission and computation, we propose a 2-D Markov chain and derive the average task completion time in closed-form. Furthermore, we model the problem as a mixed-integer nonlinear programming and propose an efficient solution to linearize it. The high efficiency of our proposal is validated by extensive simulation-based studies. |
doi_str_mv | 10.1109/TETC.2014.2310456 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2014_2310456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6762920</ieee_id><sourcerecordid>10_1109_TETC_2014_2310456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWGp_gHjJH9h1skmT7FG3WgsVPdTzkk0mJWJ3JYkH_fXu0iIOAzOH9x6Pj5BrBiVjUN_uHnZNWQETZcUZiKU8I7OKSV1ItYTzf_8lWaT0DuNoJmupZmTTDCnT59CHQ_gxOQw99UOk92FPVyYb-hoHiymFfk9DT9c4FKuQcgzdV0Z3lDTYZ4zpilx485Fwcbpz8vY49noqti_rTXO3LSxXIhfCeld34LXn3noha8ZBe-fQynGV1UpoLdHJCsFJJb21nXWSCcM9dAz4nLBjro1DShF9-xnDwcTvlkE74WgnHO2Eoz3hGD03R09AxD_9mF7VFfBf2XdcMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cost Minimization for Big Data Processing in Geo-Distributed Data Centers</title><source>IEEE Xplore Open Access Journals</source><source>IEEE Xplore (Online service)</source><creator>Gu, Lin ; Zeng, Deze ; Li, Peng ; Guo, Song</creator><creatorcontrib>Gu, Lin ; Zeng, Deze ; Li, Peng ; Guo, Song</creatorcontrib><description>The explosive growth of demands on big data processing imposes a heavy burden on computation, storage, and communication in data centers, which hence incurs considerable operational expenditure to data center providers. Therefore, cost minimization has become an emergent issue for the upcoming big data era. Different from conventional cloud services, one of the main features of big data services is the tight coupling between data and computation as computation tasks can be conducted only when the corresponding data are available. As a result, three factors, i.e., task assignment, data placement, and data movement, deeply influence the operational expenditure of data centers. In this paper, we are motivated to study the cost minimization problem via a joint optimization of these three factors for big data services in geo-distributed data centers. To describe the task completion time with the consideration of both data transmission and computation, we propose a 2-D Markov chain and derive the average task completion time in closed-form. Furthermore, we model the problem as a mixed-integer nonlinear programming and propose an efficient solution to linearize it. The high efficiency of our proposal is validated by extensive simulation-based studies.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2014.2310456</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Big data ; Data handling ; Data storage systems ; Distributed databases ; Information management ; Minimization ; Routing protocols</subject><ispartof>IEEE transactions on emerging topics in computing, 2014-09, Vol.2 (3), p.314-323</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103</citedby><cites>FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6762920$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27612,27903,27904,54775,54912</link.rule.ids></links><search><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zeng, Deze</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><title>Cost Minimization for Big Data Processing in Geo-Distributed Data Centers</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>The explosive growth of demands on big data processing imposes a heavy burden on computation, storage, and communication in data centers, which hence incurs considerable operational expenditure to data center providers. Therefore, cost minimization has become an emergent issue for the upcoming big data era. Different from conventional cloud services, one of the main features of big data services is the tight coupling between data and computation as computation tasks can be conducted only when the corresponding data are available. As a result, three factors, i.e., task assignment, data placement, and data movement, deeply influence the operational expenditure of data centers. In this paper, we are motivated to study the cost minimization problem via a joint optimization of these three factors for big data services in geo-distributed data centers. To describe the task completion time with the consideration of both data transmission and computation, we propose a 2-D Markov chain and derive the average task completion time in closed-form. Furthermore, we model the problem as a mixed-integer nonlinear programming and propose an efficient solution to linearize it. The high efficiency of our proposal is validated by extensive simulation-based studies.</description><subject>Big data</subject><subject>Data handling</subject><subject>Data storage systems</subject><subject>Distributed databases</subject><subject>Information management</subject><subject>Minimization</subject><subject>Routing protocols</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkEFLAzEQhYMoWGp_gHjJH9h1skmT7FG3WgsVPdTzkk0mJWJ3JYkH_fXu0iIOAzOH9x6Pj5BrBiVjUN_uHnZNWQETZcUZiKU8I7OKSV1ItYTzf_8lWaT0DuNoJmupZmTTDCnT59CHQ_gxOQw99UOk92FPVyYb-hoHiymFfk9DT9c4FKuQcgzdV0Z3lDTYZ4zpilx485Fwcbpz8vY49noqti_rTXO3LSxXIhfCeld34LXn3noha8ZBe-fQynGV1UpoLdHJCsFJJb21nXWSCcM9dAz4nLBjro1DShF9-xnDwcTvlkE74WgnHO2Eoz3hGD03R09AxD_9mF7VFfBf2XdcMg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Gu, Lin</creator><creator>Zeng, Deze</creator><creator>Li, Peng</creator><creator>Guo, Song</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140901</creationdate><title>Cost Minimization for Big Data Processing in Geo-Distributed Data Centers</title><author>Gu, Lin ; Zeng, Deze ; Li, Peng ; Guo, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Big data</topic><topic>Data handling</topic><topic>Data storage systems</topic><topic>Distributed databases</topic><topic>Information management</topic><topic>Minimization</topic><topic>Routing protocols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zeng, Deze</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Lin</au><au>Zeng, Deze</au><au>Li, Peng</au><au>Guo, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost Minimization for Big Data Processing in Geo-Distributed Data Centers</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>2</volume><issue>3</issue><spage>314</spage><epage>323</epage><pages>314-323</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>The explosive growth of demands on big data processing imposes a heavy burden on computation, storage, and communication in data centers, which hence incurs considerable operational expenditure to data center providers. Therefore, cost minimization has become an emergent issue for the upcoming big data era. Different from conventional cloud services, one of the main features of big data services is the tight coupling between data and computation as computation tasks can be conducted only when the corresponding data are available. As a result, three factors, i.e., task assignment, data placement, and data movement, deeply influence the operational expenditure of data centers. In this paper, we are motivated to study the cost minimization problem via a joint optimization of these three factors for big data services in geo-distributed data centers. To describe the task completion time with the consideration of both data transmission and computation, we propose a 2-D Markov chain and derive the average task completion time in closed-form. Furthermore, we model the problem as a mixed-integer nonlinear programming and propose an efficient solution to linearize it. The high efficiency of our proposal is validated by extensive simulation-based studies.</abstract><pub>IEEE</pub><doi>10.1109/TETC.2014.2310456</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-6750 |
ispartof | IEEE transactions on emerging topics in computing, 2014-09, Vol.2 (3), p.314-323 |
issn | 2168-6750 2168-6750 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TETC_2014_2310456 |
source | IEEE Xplore Open Access Journals; IEEE Xplore (Online service) |
subjects | Big data Data handling Data storage systems Distributed databases Information management Minimization Routing protocols |
title | Cost Minimization for Big Data Processing in Geo-Distributed Data Centers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%20Minimization%20for%20Big%20Data%20Processing%20in%20Geo-Distributed%20Data%20Centers&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Gu,%20Lin&rft.date=2014-09-01&rft.volume=2&rft.issue=3&rft.spage=314&rft.epage=323&rft.pages=314-323&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2014.2310456&rft_dat=%3Ccrossref_ieee_%3E10_1109_TETC_2014_2310456%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-4cfd9b0f8f3fcf4691308fddec6ec67c874886ed62e0d676fccbcd614a3f0b103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6762920&rfr_iscdi=true |