Loading…
A New Class Topper Optimization Algorithm with an Application to Data Clustering
In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may l...
Saved in:
Published in: | IEEE transactions on emerging topics in computing 2020-10, Vol.8 (4), p.948-959 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3 |
container_end_page | 959 |
container_issue | 4 |
container_start_page | 948 |
container_title | IEEE transactions on emerging topics in computing |
container_volume | 8 |
creator | Das, Pranesh Das, Dushmanta Kumar Dey, Shouvik |
description | In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms. |
doi_str_mv | 10.1109/TETC.2018.2812927 |
format | article |
fullrecord | <record><control><sourceid>proquest_ESBDL</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2018_2812927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8307256</ieee_id><sourcerecordid>2468753744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqJgqf0B4iXgeWseu3kcS31CsR7qOcQ0qSnbZk1Siv56s2wR5zAzzHzfPD4ArjGaYozk3ephNZ8ShMWUCEwk4WdgRDATFeMNOv-XX4JJSltUTGAmGR-Btxl8tUc4b3VKcBW6zka47LLf-R-dfdjDWbsJ0efPHTwWD3WpdF3rzdDNAd7rrAv_kLKNfr-5AhdOt8lOTnEM3h_Lec_VYvn0Mp8tKkNrnCtikUNSOkvWlkuJGrSW7EM0wgjW_-QEr-tSahw11DnJG-tQbWrKjDbCGjoGt8PcLoavg01ZbcMh7stKRWomeEPLgILCA8rEkFK0TnXR73T8Vhipfo_qtVO9duqkXeHcDBxvrf3DC4o4aRj9BXteaac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468753744</pqid></control><display><type>article</type><title>A New Class Topper Optimization Algorithm with an Application to Data Clustering</title><source>IEEE Xplore Open Access Journals</source><creator>Das, Pranesh ; Das, Dushmanta Kumar ; Dey, Shouvik</creator><creatorcontrib>Das, Pranesh ; Das, Dushmanta Kumar ; Dey, Shouvik</creatorcontrib><description>In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2018.2812927</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Clustering ; Clustering algorithms ; Data analysis ; data analysis and nature inspired optimization ; Data clustering ; Heuristic algorithms ; Heuristic methods ; learning intelligence ; Learning systems ; Machine learning ; Optimization ; optimization algorithm ; Optimization algorithms ; Search algorithms ; Standard data ; Whales</subject><ispartof>IEEE transactions on emerging topics in computing, 2020-10, Vol.8 (4), p.948-959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</citedby><cites>FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</cites><orcidid>0000-0002-4375-676X ; 0000-0003-2190-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8307256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54771,54908</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8307256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Das, Pranesh</creatorcontrib><creatorcontrib>Das, Dushmanta Kumar</creatorcontrib><creatorcontrib>Dey, Shouvik</creatorcontrib><title>A New Class Topper Optimization Algorithm with an Application to Data Clustering</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.</description><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data analysis</subject><subject>data analysis and nature inspired optimization</subject><subject>Data clustering</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>learning intelligence</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Optimization algorithms</subject><subject>Search algorithms</subject><subject>Standard data</subject><subject>Whales</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNUEtLAzEQDqJgqf0B4iXgeWseu3kcS31CsR7qOcQ0qSnbZk1Siv56s2wR5zAzzHzfPD4ArjGaYozk3ephNZ8ShMWUCEwk4WdgRDATFeMNOv-XX4JJSltUTGAmGR-Btxl8tUc4b3VKcBW6zka47LLf-R-dfdjDWbsJ0efPHTwWD3WpdF3rzdDNAd7rrAv_kLKNfr-5AhdOt8lOTnEM3h_Lec_VYvn0Mp8tKkNrnCtikUNSOkvWlkuJGrSW7EM0wgjW_-QEr-tSahw11DnJG-tQbWrKjDbCGjoGt8PcLoavg01ZbcMh7stKRWomeEPLgILCA8rEkFK0TnXR73T8Vhipfo_qtVO9duqkXeHcDBxvrf3DC4o4aRj9BXteaac</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Das, Pranesh</creator><creator>Das, Dushmanta Kumar</creator><creator>Dey, Shouvik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4375-676X</orcidid><orcidid>https://orcid.org/0000-0003-2190-2946</orcidid></search><sort><creationdate>20201001</creationdate><title>A New Class Topper Optimization Algorithm with an Application to Data Clustering</title><author>Das, Pranesh ; Das, Dushmanta Kumar ; Dey, Shouvik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data analysis</topic><topic>data analysis and nature inspired optimization</topic><topic>Data clustering</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>learning intelligence</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Optimization algorithms</topic><topic>Search algorithms</topic><topic>Standard data</topic><topic>Whales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Pranesh</creatorcontrib><creatorcontrib>Das, Dushmanta Kumar</creatorcontrib><creatorcontrib>Dey, Shouvik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Pranesh</au><au>Das, Dushmanta Kumar</au><au>Dey, Shouvik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Class Topper Optimization Algorithm with an Application to Data Clustering</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>948</spage><epage>959</epage><pages>948-959</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2018.2812927</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4375-676X</orcidid><orcidid>https://orcid.org/0000-0003-2190-2946</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6750 |
ispartof | IEEE transactions on emerging topics in computing, 2020-10, Vol.8 (4), p.948-959 |
issn | 2168-6750 2168-6750 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TETC_2018_2812927 |
source | IEEE Xplore Open Access Journals |
subjects | Artificial intelligence Clustering Clustering algorithms Data analysis data analysis and nature inspired optimization Data clustering Heuristic algorithms Heuristic methods learning intelligence Learning systems Machine learning Optimization optimization algorithm Optimization algorithms Search algorithms Standard data Whales |
title | A New Class Topper Optimization Algorithm with an Application to Data Clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ESBDL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Class%20Topper%20Optimization%20Algorithm%20with%20an%20Application%20to%20Data%20Clustering&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Das,%20Pranesh&rft.date=2020-10-01&rft.volume=8&rft.issue=4&rft.spage=948&rft.epage=959&rft.pages=948-959&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2018.2812927&rft_dat=%3Cproquest_ESBDL%3E2468753744%3C/proquest_ESBDL%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468753744&rft_id=info:pmid/&rft_ieee_id=8307256&rfr_iscdi=true |