Loading…

A New Class Topper Optimization Algorithm with an Application to Data Clustering

In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computing 2020-10, Vol.8 (4), p.948-959
Main Authors: Das, Pranesh, Das, Dushmanta Kumar, Dey, Shouvik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3
cites cdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3
container_end_page 959
container_issue 4
container_start_page 948
container_title IEEE transactions on emerging topics in computing
container_volume 8
creator Das, Pranesh
Das, Dushmanta Kumar
Dey, Shouvik
description In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.
doi_str_mv 10.1109/TETC.2018.2812927
format article
fullrecord <record><control><sourceid>proquest_ESBDL</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2018_2812927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8307256</ieee_id><sourcerecordid>2468753744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqJgqf0B4iXgeWseu3kcS31CsR7qOcQ0qSnbZk1Siv56s2wR5zAzzHzfPD4ArjGaYozk3ephNZ8ShMWUCEwk4WdgRDATFeMNOv-XX4JJSltUTGAmGR-Btxl8tUc4b3VKcBW6zka47LLf-R-dfdjDWbsJ0efPHTwWD3WpdF3rzdDNAd7rrAv_kLKNfr-5AhdOt8lOTnEM3h_Lec_VYvn0Mp8tKkNrnCtikUNSOkvWlkuJGrSW7EM0wgjW_-QEr-tSahw11DnJG-tQbWrKjDbCGjoGt8PcLoavg01ZbcMh7stKRWomeEPLgILCA8rEkFK0TnXR73T8Vhipfo_qtVO9duqkXeHcDBxvrf3DC4o4aRj9BXteaac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468753744</pqid></control><display><type>article</type><title>A New Class Topper Optimization Algorithm with an Application to Data Clustering</title><source>IEEE Xplore Open Access Journals</source><creator>Das, Pranesh ; Das, Dushmanta Kumar ; Dey, Shouvik</creator><creatorcontrib>Das, Pranesh ; Das, Dushmanta Kumar ; Dey, Shouvik</creatorcontrib><description>In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2018.2812927</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Clustering ; Clustering algorithms ; Data analysis ; data analysis and nature inspired optimization ; Data clustering ; Heuristic algorithms ; Heuristic methods ; learning intelligence ; Learning systems ; Machine learning ; Optimization ; optimization algorithm ; Optimization algorithms ; Search algorithms ; Standard data ; Whales</subject><ispartof>IEEE transactions on emerging topics in computing, 2020-10, Vol.8 (4), p.948-959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</citedby><cites>FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</cites><orcidid>0000-0002-4375-676X ; 0000-0003-2190-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8307256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54771,54908</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8307256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Das, Pranesh</creatorcontrib><creatorcontrib>Das, Dushmanta Kumar</creatorcontrib><creatorcontrib>Dey, Shouvik</creatorcontrib><title>A New Class Topper Optimization Algorithm with an Application to Data Clustering</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.</description><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data analysis</subject><subject>data analysis and nature inspired optimization</subject><subject>Data clustering</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>learning intelligence</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>optimization algorithm</subject><subject>Optimization algorithms</subject><subject>Search algorithms</subject><subject>Standard data</subject><subject>Whales</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNUEtLAzEQDqJgqf0B4iXgeWseu3kcS31CsR7qOcQ0qSnbZk1Siv56s2wR5zAzzHzfPD4ArjGaYozk3ephNZ8ShMWUCEwk4WdgRDATFeMNOv-XX4JJSltUTGAmGR-Btxl8tUc4b3VKcBW6zka47LLf-R-dfdjDWbsJ0efPHTwWD3WpdF3rzdDNAd7rrAv_kLKNfr-5AhdOt8lOTnEM3h_Lec_VYvn0Mp8tKkNrnCtikUNSOkvWlkuJGrSW7EM0wgjW_-QEr-tSahw11DnJG-tQbWrKjDbCGjoGt8PcLoavg01ZbcMh7stKRWomeEPLgILCA8rEkFK0TnXR73T8Vhipfo_qtVO9duqkXeHcDBxvrf3DC4o4aRj9BXteaac</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Das, Pranesh</creator><creator>Das, Dushmanta Kumar</creator><creator>Dey, Shouvik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4375-676X</orcidid><orcidid>https://orcid.org/0000-0003-2190-2946</orcidid></search><sort><creationdate>20201001</creationdate><title>A New Class Topper Optimization Algorithm with an Application to Data Clustering</title><author>Das, Pranesh ; Das, Dushmanta Kumar ; Dey, Shouvik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data analysis</topic><topic>data analysis and nature inspired optimization</topic><topic>Data clustering</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>learning intelligence</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>optimization algorithm</topic><topic>Optimization algorithms</topic><topic>Search algorithms</topic><topic>Standard data</topic><topic>Whales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Pranesh</creatorcontrib><creatorcontrib>Das, Dushmanta Kumar</creatorcontrib><creatorcontrib>Dey, Shouvik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Das, Pranesh</au><au>Das, Dushmanta Kumar</au><au>Dey, Shouvik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Class Topper Optimization Algorithm with an Application to Data Clustering</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>948</spage><epage>959</epage><pages>948-959</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>In this paper, a new Class Topper Optimization (CTO) algorithm is proposed. The optimization algorithm is inspired from the learning intelligence of students in a class. The algorithm is population based search algorithm. In this approach, solution is converging towards the best solution. This may lead to a global best solution. To verify the performance of the algorithm, a clustering problem is considered. Five standard data sets are considered for real time validation. The analysis shows that the proposed algorithm performs very well compared to various well known existing heuristic or meta-heuristic optimization algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2018.2812927</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4375-676X</orcidid><orcidid>https://orcid.org/0000-0003-2190-2946</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6750
ispartof IEEE transactions on emerging topics in computing, 2020-10, Vol.8 (4), p.948-959
issn 2168-6750
2168-6750
language eng
recordid cdi_crossref_primary_10_1109_TETC_2018_2812927
source IEEE Xplore Open Access Journals
subjects Artificial intelligence
Clustering
Clustering algorithms
Data analysis
data analysis and nature inspired optimization
Data clustering
Heuristic algorithms
Heuristic methods
learning intelligence
Learning systems
Machine learning
Optimization
optimization algorithm
Optimization algorithms
Search algorithms
Standard data
Whales
title A New Class Topper Optimization Algorithm with an Application to Data Clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ESBDL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Class%20Topper%20Optimization%20Algorithm%20with%20an%20Application%20to%20Data%20Clustering&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Das,%20Pranesh&rft.date=2020-10-01&rft.volume=8&rft.issue=4&rft.spage=948&rft.epage=959&rft.pages=948-959&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2018.2812927&rft_dat=%3Cproquest_ESBDL%3E2468753744%3C/proquest_ESBDL%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-2e0f099fe2de799050d96b858c861109f8744d965f3c3ff975ef04c436cac8ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468753744&rft_id=info:pmid/&rft_ieee_id=8307256&rfr_iscdi=true