Loading…
Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM
KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition. Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation (DGT) is a variant of NTT that reduces transform lengt...
Saved in:
Published in: | IEEE transactions on emerging topics in computing 2023-10, Vol.11 (4), p.1-15 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-f4bf3921c9121b007544a53d635781876909cf59f11fdf84c0c11fa39a2307743 |
container_end_page | 15 |
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on emerging topics in computing |
container_volume | 11 |
creator | Li, Guangyan Chen, Donglong Mao, Gaoyu Dai, Wangchen Sanka, Abdurrashid Ibrahim Cheung, Ray C.C. |
description | KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition. Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation (DGT) is a variant of NTT that reduces transform length into half but requires more multiplication operations than the latest NTT algorithm in theoretical analysis. This paper proposes the split-radix DGT, a novel DGT variant utilizing the split-radix method, to reduce the computing complexity without compromising the transform length. Specifically, for length-128 polynomial, the split-radix DGT algorithm saves at least 10% multiplication operations compared with the latest NTT algorithm in theoretical analysis. Furthermore, we proposed a unified split-radix DGT processor with the dedicated stream permutation network for KyberKEM and implemented it on the Xilinx Artix-7 FPGA. The processor achieves at least 49.4% faster transformation and 65.3% faster component-wise multiplication, with at most 87% and 32% LUT-NTT area-time product and LUT-CWM area-time product, compared with the state-of-the-art polynomial multipliers in KyberKEM with the same BFU setting on similar platforms. Lastly, we designed a highly efficient KyberKEM architecture using the proposed split-radix DGT processor. The implementation results on Artix-7 FPGA show significant performance improvements over the state-of-the-art KyberKEM designs. |
doi_str_mv | 10.1109/TETC.2023.3270971 |
format | article |
fullrecord | <record><control><sourceid>proquest_ESBDL</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2023_3270971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10114669</ieee_id><sourcerecordid>2899465754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f4bf3921c9121b007544a53d635781876909cf59f11fdf84c0c11fa39a2307743</originalsourceid><addsrcrecordid>eNpNkEFPAjEQhTdGEwnyA0w8NPG82Gm77fZIAMGAMVGMx6bstlgCW2yXKP_eEjgwl3mH995Mviy7B9wHwPJpMV4M-wQT2qdEYCngKusQ4GXORYGvL_Rt1otxjdOUwCUXnexrsFn54NrvbT7Vof7VwaChz0cmulWDvEUfu41r83dduz80crEKpjVoojfeRbQIuonWh61unW9QUmh2WJowG7_eZTdWb6LpnXc3-3xOX07z-dvkZTiY5xVhvM0tW1oqCVQSCCwxFgVjuqA1p4UooRRcYlnZQloAW9uSVbhKSlOpCcVCMNrNHk-9u-B_9ia2au33oUknFSmlZLxIlckFJ1cVfIzBWLULbqvDQQFWR4TqiFAdEaozwpR5OGWcMebCD8A4l_QfpRhrJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899465754</pqid></control><display><type>article</type><title>Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Guangyan ; Chen, Donglong ; Mao, Gaoyu ; Dai, Wangchen ; Sanka, Abdurrashid Ibrahim ; Cheung, Ray C.C.</creator><creatorcontrib>Li, Guangyan ; Chen, Donglong ; Mao, Gaoyu ; Dai, Wangchen ; Sanka, Abdurrashid Ibrahim ; Cheung, Ray C.C.</creatorcontrib><description>KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition. Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation (DGT) is a variant of NTT that reduces transform length into half but requires more multiplication operations than the latest NTT algorithm in theoretical analysis. This paper proposes the split-radix DGT, a novel DGT variant utilizing the split-radix method, to reduce the computing complexity without compromising the transform length. Specifically, for length-128 polynomial, the split-radix DGT algorithm saves at least 10% multiplication operations compared with the latest NTT algorithm in theoretical analysis. Furthermore, we proposed a unified split-radix DGT processor with the dedicated stream permutation network for KyberKEM and implemented it on the Xilinx Artix-7 FPGA. The processor achieves at least 49.4% faster transformation and 65.3% faster component-wise multiplication, with at most 87% and 32% LUT-NTT area-time product and LUT-CWM area-time product, compared with the state-of-the-art polynomial multipliers in KyberKEM with the same BFU setting on similar platforms. Lastly, we designed a highly efficient KyberKEM architecture using the proposed split-radix DGT processor. The implementation results on Artix-7 FPGA show significant performance improvements over the state-of-the-art KyberKEM designs.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2023.3270971</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Co-design ; Complexity theory ; Computation ; Computer architecture ; Convolution ; Design ; Discrete galois transform ; Field programmable gate arrays ; FPGA ; Hardware ; key encapsulation mechanism ; Microprocessors ; negative wrapped convolution ; NIST ; Permutations ; Polynomials ; post-quantum cryptography ; Quantum cryptography ; split-radix ; State of the art ; Transformations ; Transforms</subject><ispartof>IEEE transactions on emerging topics in computing, 2023-10, Vol.11 (4), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f4bf3921c9121b007544a53d635781876909cf59f11fdf84c0c11fa39a2307743</cites><orcidid>0000-0002-6764-0729 ; 0000-0001-5357-7442 ; 0000-0002-8399-9467 ; 0000-0001-7403-3081 ; 0000-0002-1664-5108 ; 0000-0002-5192-1649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10114669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54796,54933</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10114669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Guangyan</creatorcontrib><creatorcontrib>Chen, Donglong</creatorcontrib><creatorcontrib>Mao, Gaoyu</creatorcontrib><creatorcontrib>Dai, Wangchen</creatorcontrib><creatorcontrib>Sanka, Abdurrashid Ibrahim</creatorcontrib><creatorcontrib>Cheung, Ray C.C.</creatorcontrib><title>Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition. Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation (DGT) is a variant of NTT that reduces transform length into half but requires more multiplication operations than the latest NTT algorithm in theoretical analysis. This paper proposes the split-radix DGT, a novel DGT variant utilizing the split-radix method, to reduce the computing complexity without compromising the transform length. Specifically, for length-128 polynomial, the split-radix DGT algorithm saves at least 10% multiplication operations compared with the latest NTT algorithm in theoretical analysis. Furthermore, we proposed a unified split-radix DGT processor with the dedicated stream permutation network for KyberKEM and implemented it on the Xilinx Artix-7 FPGA. The processor achieves at least 49.4% faster transformation and 65.3% faster component-wise multiplication, with at most 87% and 32% LUT-NTT area-time product and LUT-CWM area-time product, compared with the state-of-the-art polynomial multipliers in KyberKEM with the same BFU setting on similar platforms. Lastly, we designed a highly efficient KyberKEM architecture using the proposed split-radix DGT processor. The implementation results on Artix-7 FPGA show significant performance improvements over the state-of-the-art KyberKEM designs.</description><subject>Algorithms</subject><subject>Co-design</subject><subject>Complexity theory</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Design</subject><subject>Discrete galois transform</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Hardware</subject><subject>key encapsulation mechanism</subject><subject>Microprocessors</subject><subject>negative wrapped convolution</subject><subject>NIST</subject><subject>Permutations</subject><subject>Polynomials</subject><subject>post-quantum cryptography</subject><subject>Quantum cryptography</subject><subject>split-radix</subject><subject>State of the art</subject><subject>Transformations</subject><subject>Transforms</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPAjEQhTdGEwnyA0w8NPG82Gm77fZIAMGAMVGMx6bstlgCW2yXKP_eEjgwl3mH995Mviy7B9wHwPJpMV4M-wQT2qdEYCngKusQ4GXORYGvL_Rt1otxjdOUwCUXnexrsFn54NrvbT7Vof7VwaChz0cmulWDvEUfu41r83dduz80crEKpjVoojfeRbQIuonWh61unW9QUmh2WJowG7_eZTdWb6LpnXc3-3xOX07z-dvkZTiY5xVhvM0tW1oqCVQSCCwxFgVjuqA1p4UooRRcYlnZQloAW9uSVbhKSlOpCcVCMNrNHk-9u-B_9ia2au33oUknFSmlZLxIlckFJ1cVfIzBWLULbqvDQQFWR4TqiFAdEaozwpR5OGWcMebCD8A4l_QfpRhrJg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Guangyan</creator><creator>Chen, Donglong</creator><creator>Mao, Gaoyu</creator><creator>Dai, Wangchen</creator><creator>Sanka, Abdurrashid Ibrahim</creator><creator>Cheung, Ray C.C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6764-0729</orcidid><orcidid>https://orcid.org/0000-0001-5357-7442</orcidid><orcidid>https://orcid.org/0000-0002-8399-9467</orcidid><orcidid>https://orcid.org/0000-0001-7403-3081</orcidid><orcidid>https://orcid.org/0000-0002-1664-5108</orcidid><orcidid>https://orcid.org/0000-0002-5192-1649</orcidid></search><sort><creationdate>20231001</creationdate><title>Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM</title><author>Li, Guangyan ; Chen, Donglong ; Mao, Gaoyu ; Dai, Wangchen ; Sanka, Abdurrashid Ibrahim ; Cheung, Ray C.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f4bf3921c9121b007544a53d635781876909cf59f11fdf84c0c11fa39a2307743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Co-design</topic><topic>Complexity theory</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Design</topic><topic>Discrete galois transform</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Hardware</topic><topic>key encapsulation mechanism</topic><topic>Microprocessors</topic><topic>negative wrapped convolution</topic><topic>NIST</topic><topic>Permutations</topic><topic>Polynomials</topic><topic>post-quantum cryptography</topic><topic>Quantum cryptography</topic><topic>split-radix</topic><topic>State of the art</topic><topic>Transformations</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guangyan</creatorcontrib><creatorcontrib>Chen, Donglong</creatorcontrib><creatorcontrib>Mao, Gaoyu</creatorcontrib><creatorcontrib>Dai, Wangchen</creatorcontrib><creatorcontrib>Sanka, Abdurrashid Ibrahim</creatorcontrib><creatorcontrib>Cheung, Ray C.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guangyan</au><au>Chen, Donglong</au><au>Mao, Gaoyu</au><au>Dai, Wangchen</au><au>Sanka, Abdurrashid Ibrahim</au><au>Cheung, Ray C.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>11</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition. Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation (DGT) is a variant of NTT that reduces transform length into half but requires more multiplication operations than the latest NTT algorithm in theoretical analysis. This paper proposes the split-radix DGT, a novel DGT variant utilizing the split-radix method, to reduce the computing complexity without compromising the transform length. Specifically, for length-128 polynomial, the split-radix DGT algorithm saves at least 10% multiplication operations compared with the latest NTT algorithm in theoretical analysis. Furthermore, we proposed a unified split-radix DGT processor with the dedicated stream permutation network for KyberKEM and implemented it on the Xilinx Artix-7 FPGA. The processor achieves at least 49.4% faster transformation and 65.3% faster component-wise multiplication, with at most 87% and 32% LUT-NTT area-time product and LUT-CWM area-time product, compared with the state-of-the-art polynomial multipliers in KyberKEM with the same BFU setting on similar platforms. Lastly, we designed a highly efficient KyberKEM architecture using the proposed split-radix DGT processor. The implementation results on Artix-7 FPGA show significant performance improvements over the state-of-the-art KyberKEM designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2023.3270971</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6764-0729</orcidid><orcidid>https://orcid.org/0000-0001-5357-7442</orcidid><orcidid>https://orcid.org/0000-0002-8399-9467</orcidid><orcidid>https://orcid.org/0000-0001-7403-3081</orcidid><orcidid>https://orcid.org/0000-0002-1664-5108</orcidid><orcidid>https://orcid.org/0000-0002-5192-1649</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6750 |
ispartof | IEEE transactions on emerging topics in computing, 2023-10, Vol.11 (4), p.1-15 |
issn | 2168-6750 2168-6750 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TETC_2023_3270971 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Co-design Complexity theory Computation Computer architecture Convolution Design Discrete galois transform Field programmable gate arrays FPGA Hardware key encapsulation mechanism Microprocessors negative wrapped convolution NIST Permutations Polynomials post-quantum cryptography Quantum cryptography split-radix State of the art Transformations Transforms |
title | Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ESBDL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm-Hardware%20Co-Design%20of%20Split-Radix%20Discrete%20Galois%20Transformation%20for%20KyberKEM&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Li,%20Guangyan&rft.date=2023-10-01&rft.volume=11&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2023.3270971&rft_dat=%3Cproquest_ESBDL%3E2899465754%3C/proquest_ESBDL%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-f4bf3921c9121b007544a53d635781876909cf59f11fdf84c0c11fa39a2307743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899465754&rft_id=info:pmid/&rft_ieee_id=10114669&rfr_iscdi=true |