Loading…

Toward a theory of generalization and learning in XCS

Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2004-02, Vol.8 (1), p.28-46
Main Authors: Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83
cites cdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83
container_end_page 46
container_issue 1
container_start_page 28
container_title IEEE transactions on evolutionary computation
container_volume 8
creator Butz, M.V.
Kovacs, T.
Lanzi, P.L.
Wilson, S.W.
description Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.
doi_str_mv 10.1109/TEVC.2003.818194
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2003_818194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266372</ieee_id><sourcerecordid>28694305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIsoqKt3wUsRFC9dJ68mOUrxBYIHV_EWZrPpWqmpJl1k_fWmVFjw4GVmYL4ZZr4sOyIwJQT0xezquZpSADZVRBHNt7K9FEkBQMvtVIPShZTqZTfbj_ENgHBB9F4mZt0XhkWOef_qurDOuzpfOu8Cts039k3nc_SLvHUYfOOXeePzl-rxINupsY3u8DdPsqfrq1l1W9w_3NxVl_eF5Vz1BSqgjglHpLRCzol1iJLXCw6SpyvTaYJTLIHOlVU14ei4FQq4ngMRtVVskp2Nez9C97lysTfvTbSubdG7bhUNVaXmDEQCz_8FSSkJG1TIhJ78Qd-6VfDpDaMU05IDDBCMkA1djMHV5iM07xjWhoAZfJvBtxl8m9F3Gjn93YvRYlsH9LaJmznBtWYlTdzxyDXOuU2bliWTlP0ABwmFkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883974007</pqid></control><display><type>article</type><title>Toward a theory of generalization and learning in XCS</title><source>IEEE Xplore All Conference Series</source><creator>Butz, M.V. ; Kovacs, T. ; Lanzi, P.L. ; Wilson, S.W.</creator><creatorcontrib>Butz, M.V. ; Kovacs, T. ; Lanzi, P.L. ; Wilson, S.W.</creatorcontrib><description>Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2003.818194</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Classifiers ; Computer science ; Computer science; control theory; systems ; Data analysis ; Differential equations ; Evolutionary ; Exact sciences and technology ; Fitness ; Foundations ; Insurance ; Java ; Learning ; Learning and adaptive systems ; Machine learning ; Mathematical analysis ; Mathematical models ; Multiplexing ; Psychology ; Robots ; Testing</subject><ispartof>IEEE transactions on evolutionary computation, 2004-02, Vol.8 (1), p.28-46</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</citedby><cites>FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15499362$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Butz, M.V.</creatorcontrib><creatorcontrib>Kovacs, T.</creatorcontrib><creatorcontrib>Lanzi, P.L.</creatorcontrib><creatorcontrib>Wilson, S.W.</creatorcontrib><title>Toward a theory of generalization and learning in XCS</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data analysis</subject><subject>Differential equations</subject><subject>Evolutionary</subject><subject>Exact sciences and technology</subject><subject>Fitness</subject><subject>Foundations</subject><subject>Insurance</subject><subject>Java</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiplexing</subject><subject>Psychology</subject><subject>Robots</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIsoqKt3wUsRFC9dJ68mOUrxBYIHV_EWZrPpWqmpJl1k_fWmVFjw4GVmYL4ZZr4sOyIwJQT0xezquZpSADZVRBHNt7K9FEkBQMvtVIPShZTqZTfbj_ENgHBB9F4mZt0XhkWOef_qurDOuzpfOu8Cts039k3nc_SLvHUYfOOXeePzl-rxINupsY3u8DdPsqfrq1l1W9w_3NxVl_eF5Vz1BSqgjglHpLRCzol1iJLXCw6SpyvTaYJTLIHOlVU14ei4FQq4ngMRtVVskp2Nez9C97lysTfvTbSubdG7bhUNVaXmDEQCz_8FSSkJG1TIhJ78Qd-6VfDpDaMU05IDDBCMkA1djMHV5iM07xjWhoAZfJvBtxl8m9F3Gjn93YvRYlsH9LaJmznBtWYlTdzxyDXOuU2bliWTlP0ABwmFkw</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Butz, M.V.</creator><creator>Kovacs, T.</creator><creator>Lanzi, P.L.</creator><creator>Wilson, S.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040201</creationdate><title>Toward a theory of generalization and learning in XCS</title><author>Butz, M.V. ; Kovacs, T. ; Lanzi, P.L. ; Wilson, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data analysis</topic><topic>Differential equations</topic><topic>Evolutionary</topic><topic>Exact sciences and technology</topic><topic>Fitness</topic><topic>Foundations</topic><topic>Insurance</topic><topic>Java</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiplexing</topic><topic>Psychology</topic><topic>Robots</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butz, M.V.</creatorcontrib><creatorcontrib>Kovacs, T.</creatorcontrib><creatorcontrib>Lanzi, P.L.</creatorcontrib><creatorcontrib>Wilson, S.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Butz, M.V.</au><au>Kovacs, T.</au><au>Lanzi, P.L.</au><au>Wilson, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a theory of generalization and learning in XCS</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>8</volume><issue>1</issue><spage>28</spage><epage>46</epage><pages>28-46</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2003.818194</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2004-02, Vol.8 (1), p.28-46
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2003_818194
source IEEE Xplore All Conference Series
subjects Applied sciences
Artificial intelligence
Classifiers
Computer science
Computer science
control theory
systems
Data analysis
Differential equations
Evolutionary
Exact sciences and technology
Fitness
Foundations
Insurance
Java
Learning
Learning and adaptive systems
Machine learning
Mathematical analysis
Mathematical models
Multiplexing
Psychology
Robots
Testing
title Toward a theory of generalization and learning in XCS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20theory%20of%20generalization%20and%20learning%20in%20XCS&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Butz,%20M.V.&rft.date=2004-02-01&rft.volume=8&rft.issue=1&rft.spage=28&rft.epage=46&rft.pages=28-46&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2003.818194&rft_dat=%3Cproquest_CHZPO%3E28694305%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883974007&rft_id=info:pmid/&rft_ieee_id=1266372&rfr_iscdi=true