Loading…
Toward a theory of generalization and learning in XCS
Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pr...
Saved in:
Published in: | IEEE transactions on evolutionary computation 2004-02, Vol.8 (1), p.28-46 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83 |
container_end_page | 46 |
container_issue | 1 |
container_start_page | 28 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 8 |
creator | Butz, M.V. Kovacs, T. Lanzi, P.L. Wilson, S.W. |
description | Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity. |
doi_str_mv | 10.1109/TEVC.2003.818194 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2003_818194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266372</ieee_id><sourcerecordid>28694305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIsoqKt3wUsRFC9dJ68mOUrxBYIHV_EWZrPpWqmpJl1k_fWmVFjw4GVmYL4ZZr4sOyIwJQT0xezquZpSADZVRBHNt7K9FEkBQMvtVIPShZTqZTfbj_ENgHBB9F4mZt0XhkWOef_qurDOuzpfOu8Cts039k3nc_SLvHUYfOOXeePzl-rxINupsY3u8DdPsqfrq1l1W9w_3NxVl_eF5Vz1BSqgjglHpLRCzol1iJLXCw6SpyvTaYJTLIHOlVU14ei4FQq4ngMRtVVskp2Nez9C97lysTfvTbSubdG7bhUNVaXmDEQCz_8FSSkJG1TIhJ78Qd-6VfDpDaMU05IDDBCMkA1djMHV5iM07xjWhoAZfJvBtxl8m9F3Gjn93YvRYlsH9LaJmznBtWYlTdzxyDXOuU2bliWTlP0ABwmFkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883974007</pqid></control><display><type>article</type><title>Toward a theory of generalization and learning in XCS</title><source>IEEE Xplore All Conference Series</source><creator>Butz, M.V. ; Kovacs, T. ; Lanzi, P.L. ; Wilson, S.W.</creator><creatorcontrib>Butz, M.V. ; Kovacs, T. ; Lanzi, P.L. ; Wilson, S.W.</creatorcontrib><description>Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2003.818194</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Classifiers ; Computer science ; Computer science; control theory; systems ; Data analysis ; Differential equations ; Evolutionary ; Exact sciences and technology ; Fitness ; Foundations ; Insurance ; Java ; Learning ; Learning and adaptive systems ; Machine learning ; Mathematical analysis ; Mathematical models ; Multiplexing ; Psychology ; Robots ; Testing</subject><ispartof>IEEE transactions on evolutionary computation, 2004-02, Vol.8 (1), p.28-46</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</citedby><cites>FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15499362$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Butz, M.V.</creatorcontrib><creatorcontrib>Kovacs, T.</creatorcontrib><creatorcontrib>Lanzi, P.L.</creatorcontrib><creatorcontrib>Wilson, S.W.</creatorcontrib><title>Toward a theory of generalization and learning in XCS</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classifiers</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Data analysis</subject><subject>Differential equations</subject><subject>Evolutionary</subject><subject>Exact sciences and technology</subject><subject>Fitness</subject><subject>Foundations</subject><subject>Insurance</subject><subject>Java</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiplexing</subject><subject>Psychology</subject><subject>Robots</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIsoqKt3wUsRFC9dJ68mOUrxBYIHV_EWZrPpWqmpJl1k_fWmVFjw4GVmYL4ZZr4sOyIwJQT0xezquZpSADZVRBHNt7K9FEkBQMvtVIPShZTqZTfbj_ENgHBB9F4mZt0XhkWOef_qurDOuzpfOu8Cts039k3nc_SLvHUYfOOXeePzl-rxINupsY3u8DdPsqfrq1l1W9w_3NxVl_eF5Vz1BSqgjglHpLRCzol1iJLXCw6SpyvTaYJTLIHOlVU14ei4FQq4ngMRtVVskp2Nez9C97lysTfvTbSubdG7bhUNVaXmDEQCz_8FSSkJG1TIhJ78Qd-6VfDpDaMU05IDDBCMkA1djMHV5iM07xjWhoAZfJvBtxl8m9F3Gjn93YvRYlsH9LaJmznBtWYlTdzxyDXOuU2bliWTlP0ABwmFkw</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Butz, M.V.</creator><creator>Kovacs, T.</creator><creator>Lanzi, P.L.</creator><creator>Wilson, S.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040201</creationdate><title>Toward a theory of generalization and learning in XCS</title><author>Butz, M.V. ; Kovacs, T. ; Lanzi, P.L. ; Wilson, S.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classifiers</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Data analysis</topic><topic>Differential equations</topic><topic>Evolutionary</topic><topic>Exact sciences and technology</topic><topic>Fitness</topic><topic>Foundations</topic><topic>Insurance</topic><topic>Java</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiplexing</topic><topic>Psychology</topic><topic>Robots</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butz, M.V.</creatorcontrib><creatorcontrib>Kovacs, T.</creatorcontrib><creatorcontrib>Lanzi, P.L.</creatorcontrib><creatorcontrib>Wilson, S.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Butz, M.V.</au><au>Kovacs, T.</au><au>Lanzi, P.L.</au><au>Wilson, S.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a theory of generalization and learning in XCS</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>8</volume><issue>1</issue><spage>28</spage><epage>46</epage><pages>28-46</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Takes initial steps toward a theory of generalization and learning in the learning classifier system XCS. We start from Wilson's generalization hypothesis, which states that XCS has an intrinsic tendency to evolve accurate, maximally general classifiers. We analyze the different evolutionary pressures in XCS and derive a simple equation that supports the hypothesis theoretically. The equation is tested with a number of experiments that confirm the model of generalization pressure that we provide. Then, we focus on the conditions, termed "challenges," that must be satisfied for the existence of effective fitness or accuracy pressure in XCS. We derive two equations that suggest how to set the population size and the covering probability so as to ensure the development of fitness pressure. We argue that when the challenges are met, XCS is able to evolve problem solutions reliably. When the challenges are not met, a problem may provide intrinsic fitness guidance or the reward may be biased in such a way that the problem will still be solved. The equations and the influence of intrinsic fitness guidance and biased reward are tested on large Boolean multiplexer problems. The paper is a contribution to understanding how XCS functions and lays the foundation for research on XCS's learning complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2003.818194</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2004-02, Vol.8 (1), p.28-46 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEVC_2003_818194 |
source | IEEE Xplore All Conference Series |
subjects | Applied sciences Artificial intelligence Classifiers Computer science Computer science control theory systems Data analysis Differential equations Evolutionary Exact sciences and technology Fitness Foundations Insurance Java Learning Learning and adaptive systems Machine learning Mathematical analysis Mathematical models Multiplexing Psychology Robots Testing |
title | Toward a theory of generalization and learning in XCS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20theory%20of%20generalization%20and%20learning%20in%20XCS&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Butz,%20M.V.&rft.date=2004-02-01&rft.volume=8&rft.issue=1&rft.spage=28&rft.epage=46&rft.pages=28-46&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2003.818194&rft_dat=%3Cproquest_CHZPO%3E28694305%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-a802e35e177c57b1ceaa74fd4074818002542a602b8c8f14ae4c58049b015fc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883974007&rft_id=info:pmid/&rft_ieee_id=1266372&rfr_iscdi=true |