Loading…

Robust Optimization Over Time: Problem Difficulties and Benchmark Problems

The focus of most research in evolutionary dynamic optimization has been tracking moving optimum (TMO). Yet, TMO does not capture all the characteristics of real-world dynamic optimization problems (DOPs), especially in situations where a solution's future fitness has to be considered. To accou...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2015-10, Vol.19 (5), p.731-745
Main Authors: Haobo Fu, Sendhoff, Bernhard, Ke Tang, Xin Yao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443
cites cdi_FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443
container_end_page 745
container_issue 5
container_start_page 731
container_title IEEE transactions on evolutionary computation
container_volume 19
creator Haobo Fu
Sendhoff, Bernhard
Ke Tang
Xin Yao
description The focus of most research in evolutionary dynamic optimization has been tracking moving optimum (TMO). Yet, TMO does not capture all the characteristics of real-world dynamic optimization problems (DOPs), especially in situations where a solution's future fitness has to be considered. To account for a solution's future fitness explicitly, we propose to find robust solutions to DOPs, which are formulated as the robust optimization over time (ROOT) problem. In this paper we analyze two robustness definitions in ROOT and then develop two types of benchmark problems for the two robustness definitions in ROOT, respectively. The two types of benchmark problems are motivated by the inappropriateness of existing DOP benchmarks for the study of ROOT. Additionally, we evaluate four representative methods from the literature on our proposed ROOT benchmarks, in order to gain a better understanding of ROOT problems and their relationship to more popular TMO problems. The experimental results are analyzed, which show the strengths and weaknesses of different methods in solving ROOT problems with different dynamics. In particular, the real challenges of ROOT problems have been revealed for the first time by the experimental results on our proposed ROOT benchmarks.
doi_str_mv 10.1109/TEVC.2014.2377125
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2014_2377125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6975113</ieee_id><sourcerecordid>3855271531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayefGm9b6RaEiVbyFJM1iane3JruC_nq3tHqaOTzvzMuD0CngEQBWF_PJ63hEMLARoVIC4XtoAIpBjjER-_2OC5VLWbwdoqOUlrgnOagBenxubJfabLZuQxV-TBuaOpt9-ZjNQ-Uvs6fY2JWvsptQlsF1qzb4lJl6kV372r1XJn78IekYHZRmlfzJbg7Ry-1kPr7Pp7O7h_HVNHeUijanJUirPF8wYii2XAilrIECW-a8kKpvKhTwUppCGce45YUwljjmLJUlY3SIzrd317H57Hxq9bLpYt2_1CCJAikUoT0FW8rFJqXoS72Ooe_7rQHrjTK9UaY3yvROWZ8522aC9_6fF0pyAEp_ASKIZvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1729176923</pqid></control><display><type>article</type><title>Robust Optimization Over Time: Problem Difficulties and Benchmark Problems</title><source>IEEE Xplore All Conference Series</source><source>IEEE Xplore (Online service)</source><creator>Haobo Fu ; Sendhoff, Bernhard ; Ke Tang ; Xin Yao</creator><creatorcontrib>Haobo Fu ; Sendhoff, Bernhard ; Ke Tang ; Xin Yao</creatorcontrib><description>The focus of most research in evolutionary dynamic optimization has been tracking moving optimum (TMO). Yet, TMO does not capture all the characteristics of real-world dynamic optimization problems (DOPs), especially in situations where a solution's future fitness has to be considered. To account for a solution's future fitness explicitly, we propose to find robust solutions to DOPs, which are formulated as the robust optimization over time (ROOT) problem. In this paper we analyze two robustness definitions in ROOT and then develop two types of benchmark problems for the two robustness definitions in ROOT, respectively. The two types of benchmark problems are motivated by the inappropriateness of existing DOP benchmarks for the study of ROOT. Additionally, we evaluate four representative methods from the literature on our proposed ROOT benchmarks, in order to gain a better understanding of ROOT problems and their relationship to more popular TMO problems. The experimental results are analyzed, which show the strengths and weaknesses of different methods in solving ROOT problems with different dynamics. In particular, the real challenges of ROOT problems have been revealed for the first time by the experimental results on our proposed ROOT benchmarks.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2014.2377125</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmark testing ; Benchmarking ; Benchmarks ; Chief executive officers ; Dynamic Optimization Problems ; Educational institutions ; Equations ; Evolutionary Algorithms ; Mathematical model ; Optimization ; Robust Optimization Over Time ; Robustness ; Time series analysis</subject><ispartof>IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.731-745</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443</citedby><cites>FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6975113$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,54536,54777,54913</link.rule.ids></links><search><creatorcontrib>Haobo Fu</creatorcontrib><creatorcontrib>Sendhoff, Bernhard</creatorcontrib><creatorcontrib>Ke Tang</creatorcontrib><creatorcontrib>Xin Yao</creatorcontrib><title>Robust Optimization Over Time: Problem Difficulties and Benchmark Problems</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The focus of most research in evolutionary dynamic optimization has been tracking moving optimum (TMO). Yet, TMO does not capture all the characteristics of real-world dynamic optimization problems (DOPs), especially in situations where a solution's future fitness has to be considered. To account for a solution's future fitness explicitly, we propose to find robust solutions to DOPs, which are formulated as the robust optimization over time (ROOT) problem. In this paper we analyze two robustness definitions in ROOT and then develop two types of benchmark problems for the two robustness definitions in ROOT, respectively. The two types of benchmark problems are motivated by the inappropriateness of existing DOP benchmarks for the study of ROOT. Additionally, we evaluate four representative methods from the literature on our proposed ROOT benchmarks, in order to gain a better understanding of ROOT problems and their relationship to more popular TMO problems. The experimental results are analyzed, which show the strengths and weaknesses of different methods in solving ROOT problems with different dynamics. In particular, the real challenges of ROOT problems have been revealed for the first time by the experimental results on our proposed ROOT benchmarks.</description><subject>Benchmark testing</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Chief executive officers</subject><subject>Dynamic Optimization Problems</subject><subject>Educational institutions</subject><subject>Equations</subject><subject>Evolutionary Algorithms</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Robust Optimization Over Time</subject><subject>Robustness</subject><subject>Time series analysis</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN6ayefGm9b6RaEiVbyFJM1iane3JruC_nq3tHqaOTzvzMuD0CngEQBWF_PJ63hEMLARoVIC4XtoAIpBjjER-_2OC5VLWbwdoqOUlrgnOagBenxubJfabLZuQxV-TBuaOpt9-ZjNQ-Uvs6fY2JWvsptQlsF1qzb4lJl6kV372r1XJn78IekYHZRmlfzJbg7Ry-1kPr7Pp7O7h_HVNHeUijanJUirPF8wYii2XAilrIECW-a8kKpvKhTwUppCGce45YUwljjmLJUlY3SIzrd317H57Hxq9bLpYt2_1CCJAikUoT0FW8rFJqXoS72Ooe_7rQHrjTK9UaY3yvROWZ8522aC9_6fF0pyAEp_ASKIZvU</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Haobo Fu</creator><creator>Sendhoff, Bernhard</creator><creator>Ke Tang</creator><creator>Xin Yao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201510</creationdate><title>Robust Optimization Over Time: Problem Difficulties and Benchmark Problems</title><author>Haobo Fu ; Sendhoff, Bernhard ; Ke Tang ; Xin Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benchmark testing</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Chief executive officers</topic><topic>Dynamic Optimization Problems</topic><topic>Educational institutions</topic><topic>Equations</topic><topic>Evolutionary Algorithms</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Robust Optimization Over Time</topic><topic>Robustness</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haobo Fu</creatorcontrib><creatorcontrib>Sendhoff, Bernhard</creatorcontrib><creatorcontrib>Ke Tang</creatorcontrib><creatorcontrib>Xin Yao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haobo Fu</au><au>Sendhoff, Bernhard</au><au>Ke Tang</au><au>Xin Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Optimization Over Time: Problem Difficulties and Benchmark Problems</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2015-10</date><risdate>2015</risdate><volume>19</volume><issue>5</issue><spage>731</spage><epage>745</epage><pages>731-745</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The focus of most research in evolutionary dynamic optimization has been tracking moving optimum (TMO). Yet, TMO does not capture all the characteristics of real-world dynamic optimization problems (DOPs), especially in situations where a solution's future fitness has to be considered. To account for a solution's future fitness explicitly, we propose to find robust solutions to DOPs, which are formulated as the robust optimization over time (ROOT) problem. In this paper we analyze two robustness definitions in ROOT and then develop two types of benchmark problems for the two robustness definitions in ROOT, respectively. The two types of benchmark problems are motivated by the inappropriateness of existing DOP benchmarks for the study of ROOT. Additionally, we evaluate four representative methods from the literature on our proposed ROOT benchmarks, in order to gain a better understanding of ROOT problems and their relationship to more popular TMO problems. The experimental results are analyzed, which show the strengths and weaknesses of different methods in solving ROOT problems with different dynamics. In particular, the real challenges of ROOT problems have been revealed for the first time by the experimental results on our proposed ROOT benchmarks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2014.2377125</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2015-10, Vol.19 (5), p.731-745
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2014_2377125
source IEEE Xplore All Conference Series; IEEE Xplore (Online service)
subjects Benchmark testing
Benchmarking
Benchmarks
Chief executive officers
Dynamic Optimization Problems
Educational institutions
Equations
Evolutionary Algorithms
Mathematical model
Optimization
Robust Optimization Over Time
Robustness
Time series analysis
title Robust Optimization Over Time: Problem Difficulties and Benchmark Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Optimization%20Over%20Time:%20Problem%20Difficulties%20and%20Benchmark%20Problems&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Haobo%20Fu&rft.date=2015-10&rft.volume=19&rft.issue=5&rft.spage=731&rft.epage=745&rft.pages=731-745&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2014.2377125&rft_dat=%3Cproquest_cross%3E3855271531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-3f17b9e5d42a30b56699ba180b4ce6791086915f7a89ac45b586ab2c4cb37f443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1729176923&rft_id=info:pmid/&rft_ieee_id=6975113&rfr_iscdi=true