Loading…

An Expensive Many-Objective Optimization Algorithm Based on Efficient Expected Hypervolume Improvement

The expected hypervolume improvement (EHVI) is one of the most popular infill criteria for multiobjective optimization problems. Although it has a significant advantage in exploring potential Pareto-optimal solutions, it has rarely been applied in many-objective problems due to its high computationa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2023-12, Vol.27 (6), p.1822-1836
Main Authors: Pang, Yong, Wang, Yitang, Zhang, Shuai, Lai, Xiaonan, Sun, Wei, Song, Xueguan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13
cites cdi_FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13
container_end_page 1836
container_issue 6
container_start_page 1822
container_title IEEE transactions on evolutionary computation
container_volume 27
creator Pang, Yong
Wang, Yitang
Zhang, Shuai
Lai, Xiaonan
Sun, Wei
Song, Xueguan
description The expected hypervolume improvement (EHVI) is one of the most popular infill criteria for multiobjective optimization problems. Although it has a significant advantage in exploring potential Pareto-optimal solutions, it has rarely been applied in many-objective problems due to its high computational cost. To address this issue, this article proposes an expensive many-objective optimization algorithm based on the framework of nondominated sorting genetic algorithm III (NSGA-III) and assisted by the kriging surrogate models. In the proposed algorithm, the Monte Carlo sampling (MCS) method for EHVI estimation is improved by importance sampling, in which only one sampling process is required during the entire optimization process using a uniform distribution in normalized objective space. Considering the predicted uncertainty from the kriging model, an uncertainty-assisted nondominated sorting approach is proposed to substitute for the conventional approach in NSGA-III. In the proposed method, the predicted uncertainty is incorporated into the objective space as one independent dimension for nondominated sorting, which can enable the exploration of potential points with desirable EHVI values. In addition, the proposed algorithm considers the diversity of the solutions by de-emphasizing the pursuit of the best EHVI. The experimental results on benchmark problems demonstrate that the proposed EHVI calculation method can save computational costs compared with MCS and indicate the superiority of the proposed algorithm over the others.
doi_str_mv 10.1109/TEVC.2022.3228516
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2022_3228516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9979775</ieee_id><sourcerecordid>2895884574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4ptuMk9rFUgVYq6qUgbpbjbMBV84PtVpSnx6EVp90dfbMjDUK3BE8IweJhXbzNJhRTOkko5SnJztCICEZijGl2HnbMRZzn_P0SXTm3wZiwlIgRqqdtVHz30Dqzh-hFtYd4VW5A--Fc9d405kd507XRdPvRWeM_m-hROaiiIBV1bbSB1v-90D6o80MPdt9tdw1Ei6a33R6aAFyji1ptHdyc5hi9PhXr2Txerp4Xs-ky1lQkPlacMtA1MA7AsxI4LjUmmFVY6xprFigABUlJS0IZp1QwzlJISFJlVFUkGaP749-Q_LUD5-Wm29k2RErKRcoDnbNAkSOlbeechVr21jTKHiTBcqhTDnXKoU55qjN47o4eAwD_vBC5yPM0-QU3BXLH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895884574</pqid></control><display><type>article</type><title>An Expensive Many-Objective Optimization Algorithm Based on Efficient Expected Hypervolume Improvement</title><source>IEEE Xplore All Conference Series</source><creator>Pang, Yong ; Wang, Yitang ; Zhang, Shuai ; Lai, Xiaonan ; Sun, Wei ; Song, Xueguan</creator><creatorcontrib>Pang, Yong ; Wang, Yitang ; Zhang, Shuai ; Lai, Xiaonan ; Sun, Wei ; Song, Xueguan</creatorcontrib><description>The expected hypervolume improvement (EHVI) is one of the most popular infill criteria for multiobjective optimization problems. Although it has a significant advantage in exploring potential Pareto-optimal solutions, it has rarely been applied in many-objective problems due to its high computational cost. To address this issue, this article proposes an expensive many-objective optimization algorithm based on the framework of nondominated sorting genetic algorithm III (NSGA-III) and assisted by the kriging surrogate models. In the proposed algorithm, the Monte Carlo sampling (MCS) method for EHVI estimation is improved by importance sampling, in which only one sampling process is required during the entire optimization process using a uniform distribution in normalized objective space. Considering the predicted uncertainty from the kriging model, an uncertainty-assisted nondominated sorting approach is proposed to substitute for the conventional approach in NSGA-III. In the proposed method, the predicted uncertainty is incorporated into the objective space as one independent dimension for nondominated sorting, which can enable the exploration of potential points with desirable EHVI values. In addition, the proposed algorithm considers the diversity of the solutions by de-emphasizing the pursuit of the best EHVI. The experimental results on benchmark problems demonstrate that the proposed EHVI calculation method can save computational costs compared with MCS and indicate the superiority of the proposed algorithm over the others.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2022.3228516</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computing costs ; Expected hypervolume improvement (EHVI) ; expensive many-objective optimization ; Genetic algorithms ; Importance sampling ; importance sampling (IS) ; kriging ; Multiple objective analysis ; Optimization ; Optimization algorithms ; Pareto optimization ; Prediction algorithms ; Predictive models ; Sociology ; Sorting ; Sorting algorithms ; Statistics ; Uncertainty</subject><ispartof>IEEE transactions on evolutionary computation, 2023-12, Vol.27 (6), p.1822-1836</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13</citedby><cites>FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13</cites><orcidid>0000-0002-0559-2266 ; 0000-0002-8801-6060 ; 0000-0002-8235-5870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9979775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54554,54795,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9979775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pang, Yong</creatorcontrib><creatorcontrib>Wang, Yitang</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Lai, Xiaonan</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Song, Xueguan</creatorcontrib><title>An Expensive Many-Objective Optimization Algorithm Based on Efficient Expected Hypervolume Improvement</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The expected hypervolume improvement (EHVI) is one of the most popular infill criteria for multiobjective optimization problems. Although it has a significant advantage in exploring potential Pareto-optimal solutions, it has rarely been applied in many-objective problems due to its high computational cost. To address this issue, this article proposes an expensive many-objective optimization algorithm based on the framework of nondominated sorting genetic algorithm III (NSGA-III) and assisted by the kriging surrogate models. In the proposed algorithm, the Monte Carlo sampling (MCS) method for EHVI estimation is improved by importance sampling, in which only one sampling process is required during the entire optimization process using a uniform distribution in normalized objective space. Considering the predicted uncertainty from the kriging model, an uncertainty-assisted nondominated sorting approach is proposed to substitute for the conventional approach in NSGA-III. In the proposed method, the predicted uncertainty is incorporated into the objective space as one independent dimension for nondominated sorting, which can enable the exploration of potential points with desirable EHVI values. In addition, the proposed algorithm considers the diversity of the solutions by de-emphasizing the pursuit of the best EHVI. The experimental results on benchmark problems demonstrate that the proposed EHVI calculation method can save computational costs compared with MCS and indicate the superiority of the proposed algorithm over the others.</description><subject>Computing costs</subject><subject>Expected hypervolume improvement (EHVI)</subject><subject>expensive many-objective optimization</subject><subject>Genetic algorithms</subject><subject>Importance sampling</subject><subject>importance sampling (IS)</subject><subject>kriging</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Pareto optimization</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Sociology</subject><subject>Sorting</subject><subject>Sorting algorithms</subject><subject>Statistics</subject><subject>Uncertainty</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4ptuMk9rFUgVYq6qUgbpbjbMBV84PtVpSnx6EVp90dfbMjDUK3BE8IweJhXbzNJhRTOkko5SnJztCICEZijGl2HnbMRZzn_P0SXTm3wZiwlIgRqqdtVHz30Dqzh-hFtYd4VW5A--Fc9d405kd507XRdPvRWeM_m-hROaiiIBV1bbSB1v-90D6o80MPdt9tdw1Ei6a33R6aAFyji1ptHdyc5hi9PhXr2Txerp4Xs-ky1lQkPlacMtA1MA7AsxI4LjUmmFVY6xprFigABUlJS0IZp1QwzlJISFJlVFUkGaP749-Q_LUD5-Wm29k2RErKRcoDnbNAkSOlbeechVr21jTKHiTBcqhTDnXKoU55qjN47o4eAwD_vBC5yPM0-QU3BXLH</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pang, Yong</creator><creator>Wang, Yitang</creator><creator>Zhang, Shuai</creator><creator>Lai, Xiaonan</creator><creator>Sun, Wei</creator><creator>Song, Xueguan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0559-2266</orcidid><orcidid>https://orcid.org/0000-0002-8801-6060</orcidid><orcidid>https://orcid.org/0000-0002-8235-5870</orcidid></search><sort><creationdate>20231201</creationdate><title>An Expensive Many-Objective Optimization Algorithm Based on Efficient Expected Hypervolume Improvement</title><author>Pang, Yong ; Wang, Yitang ; Zhang, Shuai ; Lai, Xiaonan ; Sun, Wei ; Song, Xueguan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computing costs</topic><topic>Expected hypervolume improvement (EHVI)</topic><topic>expensive many-objective optimization</topic><topic>Genetic algorithms</topic><topic>Importance sampling</topic><topic>importance sampling (IS)</topic><topic>kriging</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Pareto optimization</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Sociology</topic><topic>Sorting</topic><topic>Sorting algorithms</topic><topic>Statistics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Yong</creatorcontrib><creatorcontrib>Wang, Yitang</creatorcontrib><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Lai, Xiaonan</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Song, Xueguan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pang, Yong</au><au>Wang, Yitang</au><au>Zhang, Shuai</au><au>Lai, Xiaonan</au><au>Sun, Wei</au><au>Song, Xueguan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Expensive Many-Objective Optimization Algorithm Based on Efficient Expected Hypervolume Improvement</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>1822</spage><epage>1836</epage><pages>1822-1836</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The expected hypervolume improvement (EHVI) is one of the most popular infill criteria for multiobjective optimization problems. Although it has a significant advantage in exploring potential Pareto-optimal solutions, it has rarely been applied in many-objective problems due to its high computational cost. To address this issue, this article proposes an expensive many-objective optimization algorithm based on the framework of nondominated sorting genetic algorithm III (NSGA-III) and assisted by the kriging surrogate models. In the proposed algorithm, the Monte Carlo sampling (MCS) method for EHVI estimation is improved by importance sampling, in which only one sampling process is required during the entire optimization process using a uniform distribution in normalized objective space. Considering the predicted uncertainty from the kriging model, an uncertainty-assisted nondominated sorting approach is proposed to substitute for the conventional approach in NSGA-III. In the proposed method, the predicted uncertainty is incorporated into the objective space as one independent dimension for nondominated sorting, which can enable the exploration of potential points with desirable EHVI values. In addition, the proposed algorithm considers the diversity of the solutions by de-emphasizing the pursuit of the best EHVI. The experimental results on benchmark problems demonstrate that the proposed EHVI calculation method can save computational costs compared with MCS and indicate the superiority of the proposed algorithm over the others.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2022.3228516</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0559-2266</orcidid><orcidid>https://orcid.org/0000-0002-8801-6060</orcidid><orcidid>https://orcid.org/0000-0002-8235-5870</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2023-12, Vol.27 (6), p.1822-1836
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2022_3228516
source IEEE Xplore All Conference Series
subjects Computing costs
Expected hypervolume improvement (EHVI)
expensive many-objective optimization
Genetic algorithms
Importance sampling
importance sampling (IS)
kriging
Multiple objective analysis
Optimization
Optimization algorithms
Pareto optimization
Prediction algorithms
Predictive models
Sociology
Sorting
Sorting algorithms
Statistics
Uncertainty
title An Expensive Many-Objective Optimization Algorithm Based on Efficient Expected Hypervolume Improvement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Expensive%20Many-Objective%20Optimization%20Algorithm%20Based%20on%20Efficient%20Expected%20Hypervolume%20Improvement&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Pang,%20Yong&rft.date=2023-12-01&rft.volume=27&rft.issue=6&rft.spage=1822&rft.epage=1836&rft.pages=1822-1836&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2022.3228516&rft_dat=%3Cproquest_CHZPO%3E2895884574%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a824ecfe48ee86be80bc0104d0ccf0c4c29eeae3b2b12482294845e313d62ad13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895884574&rft_id=info:pmid/&rft_ieee_id=9979775&rfr_iscdi=true