Loading…
On KM Algorithms for Solving Type-2 Fuzzy Set Problems
Computing the centroid and performing type-reduction for type-2 fuzzy sets and systems are operations that must be taken into consideration. Karnik-Mendel (KM) algorithms are the standard ways to do these operations; however, because these algorithms are iterative, much research has been conducted d...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2013-06, Vol.21 (3), p.426-446 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3 |
container_end_page | 446 |
container_issue | 3 |
container_start_page | 426 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 21 |
creator | Mendel, J. M. |
description | Computing the centroid and performing type-reduction for type-2 fuzzy sets and systems are operations that must be taken into consideration. Karnik-Mendel (KM) algorithms are the standard ways to do these operations; however, because these algorithms are iterative, much research has been conducted during the past decade about centroid and type-reduction computations. This tutorial paper focuses on the research that has been conducted to 1) improve the KM algorithms; 2) understand the KM algorithms, leading to further improved algorithms; 3) eliminate the need for KM algorithms; 4) use the KM algorithms to solve other (nonfuzzy logic system) problems; and 5) use (or not use) KM algorithms for general type-2 fuzzy sets and fuzzy logic systems. |
doi_str_mv | 10.1109/TFUZZ.2012.2227488 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2012_2227488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6353200</ieee_id><sourcerecordid>10_1109_TFUZZ_2012_2227488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFZfQDfzAol37k0mmWUpRsVKhaabbkJ-ZmokacpMFNKnN7XF1T2L8x34LmP3AnwhQD2myXqz8REE-ogYBXF8wSZCBcIDoOByzCDJkxHIa3bj3BeACEIRT5hc7vjbO581287W_WfruOksX3XNT73b8nTYaw958n04DHyle_5hu6LRrbtlVyZvnL473ylbJ0_p_MVbLJ9f57OFVxJR78VaoygqBSIsyJQVIAQ5VSgrAiQMxpJRylSQh0IXQJVUGBGVodH5qFXSlOFpt7Sdc1abbG_rNrdDJiA7mmd_5tnRPDubj9DDCaq11v-ApJBw_MYvBZ5TbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On KM Algorithms for Solving Type-2 Fuzzy Set Problems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mendel, J. M.</creator><creatorcontrib>Mendel, J. M.</creatorcontrib><description>Computing the centroid and performing type-reduction for type-2 fuzzy sets and systems are operations that must be taken into consideration. Karnik-Mendel (KM) algorithms are the standard ways to do these operations; however, because these algorithms are iterative, much research has been conducted during the past decade about centroid and type-reduction computations. This tutorial paper focuses on the research that has been conducted to 1) improve the KM algorithms; 2) understand the KM algorithms, leading to further improved algorithms; 3) eliminate the need for KM algorithms; 4) use the KM algorithms to solve other (nonfuzzy logic system) problems; and 5) use (or not use) KM algorithms for general type-2 fuzzy sets and fuzzy logic systems.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2012.2227488</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Approximation algorithms ; Centroid ; Convergence ; Frequency selective surfaces ; Fuzzy sets ; general type-2 fuzzy sets (GT2 FSs) ; interval type-2 fuzzy sets (IT2 FSs) ; Karnik-Mendel (KM) algorithms ; Optimization ; Shape ; tutorial ; type-reduction (TR)</subject><ispartof>IEEE transactions on fuzzy systems, 2013-06, Vol.21 (3), p.426-446</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3</citedby><cites>FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6353200$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Mendel, J. M.</creatorcontrib><title>On KM Algorithms for Solving Type-2 Fuzzy Set Problems</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Computing the centroid and performing type-reduction for type-2 fuzzy sets and systems are operations that must be taken into consideration. Karnik-Mendel (KM) algorithms are the standard ways to do these operations; however, because these algorithms are iterative, much research has been conducted during the past decade about centroid and type-reduction computations. This tutorial paper focuses on the research that has been conducted to 1) improve the KM algorithms; 2) understand the KM algorithms, leading to further improved algorithms; 3) eliminate the need for KM algorithms; 4) use the KM algorithms to solve other (nonfuzzy logic system) problems; and 5) use (or not use) KM algorithms for general type-2 fuzzy sets and fuzzy logic systems.</description><subject>Algorithm design and analysis</subject><subject>Approximation algorithms</subject><subject>Centroid</subject><subject>Convergence</subject><subject>Frequency selective surfaces</subject><subject>Fuzzy sets</subject><subject>general type-2 fuzzy sets (GT2 FSs)</subject><subject>interval type-2 fuzzy sets (IT2 FSs)</subject><subject>Karnik-Mendel (KM) algorithms</subject><subject>Optimization</subject><subject>Shape</subject><subject>tutorial</subject><subject>type-reduction (TR)</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFZfQDfzAol37k0mmWUpRsVKhaabbkJ-ZmokacpMFNKnN7XF1T2L8x34LmP3AnwhQD2myXqz8REE-ogYBXF8wSZCBcIDoOByzCDJkxHIa3bj3BeACEIRT5hc7vjbO581287W_WfruOksX3XNT73b8nTYaw958n04DHyle_5hu6LRrbtlVyZvnL473ylbJ0_p_MVbLJ9f57OFVxJR78VaoygqBSIsyJQVIAQ5VSgrAiQMxpJRylSQh0IXQJVUGBGVodH5qFXSlOFpt7Sdc1abbG_rNrdDJiA7mmd_5tnRPDubj9DDCaq11v-ApJBw_MYvBZ5TbA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Mendel, J. M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>On KM Algorithms for Solving Type-2 Fuzzy Set Problems</title><author>Mendel, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Approximation algorithms</topic><topic>Centroid</topic><topic>Convergence</topic><topic>Frequency selective surfaces</topic><topic>Fuzzy sets</topic><topic>general type-2 fuzzy sets (GT2 FSs)</topic><topic>interval type-2 fuzzy sets (IT2 FSs)</topic><topic>Karnik-Mendel (KM) algorithms</topic><topic>Optimization</topic><topic>Shape</topic><topic>tutorial</topic><topic>type-reduction (TR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendel, J. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendel, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On KM Algorithms for Solving Type-2 Fuzzy Set Problems</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>21</volume><issue>3</issue><spage>426</spage><epage>446</epage><pages>426-446</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Computing the centroid and performing type-reduction for type-2 fuzzy sets and systems are operations that must be taken into consideration. Karnik-Mendel (KM) algorithms are the standard ways to do these operations; however, because these algorithms are iterative, much research has been conducted during the past decade about centroid and type-reduction computations. This tutorial paper focuses on the research that has been conducted to 1) improve the KM algorithms; 2) understand the KM algorithms, leading to further improved algorithms; 3) eliminate the need for KM algorithms; 4) use the KM algorithms to solve other (nonfuzzy logic system) problems; and 5) use (or not use) KM algorithms for general type-2 fuzzy sets and fuzzy logic systems.</abstract><pub>IEEE</pub><doi>10.1109/TFUZZ.2012.2227488</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2013-06, Vol.21 (3), p.426-446 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TFUZZ_2012_2227488 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Approximation algorithms Centroid Convergence Frequency selective surfaces Fuzzy sets general type-2 fuzzy sets (GT2 FSs) interval type-2 fuzzy sets (IT2 FSs) Karnik-Mendel (KM) algorithms Optimization Shape tutorial type-reduction (TR) |
title | On KM Algorithms for Solving Type-2 Fuzzy Set Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20KM%20Algorithms%20for%20Solving%20Type-2%20Fuzzy%20Set%20Problems&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Mendel,%20J.%20M.&rft.date=2013-06-01&rft.volume=21&rft.issue=3&rft.spage=426&rft.epage=446&rft.pages=426-446&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2012.2227488&rft_dat=%3Ccrossref_ieee_%3E10_1109_TFUZZ_2012_2227488%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-8ee21bd9015b3fcd0204a3d26d302324333f99fd0a51eb03d692733c5fea109c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6353200&rfr_iscdi=true |