Loading…

Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations

For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 2023-07, Vol.31 (7), p.1-15
Main Authors: Guo, Xuyang, Wang, Zhuping, Zhang, Changzhu, Zhang, Hao, Huang, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3
cites cdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3
container_end_page 15
container_issue 7
container_start_page 1
container_title IEEE transactions on fuzzy systems
container_volume 31
creator Guo, Xuyang
Wang, Zhuping
Zhang, Changzhu
Zhang, Hao
Huang, Chao
description For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.
doi_str_mv 10.1109/TFUZZ.2022.3220960
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2022_3220960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9944928</ieee_id><sourcerecordid>2831521850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEElD4AdhYYp3iR5LaS1QoIPEStCCxiWxnDEZpDLZTKXw9LkWsZjRz7x3NybIjgseEYHE6ny1eX8cUUzpmlGJR4a1sj4iC5BizYjv1uGJ5NcHVbrYfwgfGpCgJ38tW571s81vXAHp0qg8Rzfrv7wGtJy168NBYHe0K0NR10bsWOYPmdgn5s_SD7d7QObRygAYtOg0-StuhO9e1tgPp0dMQIiwDerHxHT2kde-VjNZ14SDbMbINcPhXR9lidjGfXuU395fX07ObXFNRxlxPoDGq4ZwZA6XmxmhhsNBScWVkxSsleCN0qQiAqhSpKGsYlQVhRE7SjI2yk03up3dfPYRYf7jed-lkTTkjJSW8xElFNyrtXQgeTP3p7TI9WBNcr_nWv3zrNd_6j28yHW9MFgD-DUIUhUjRP_HGeiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521850</pqid></control><display><type>article</type><title>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guo, Xuyang ; Wang, Zhuping ; Zhang, Changzhu ; Zhang, Hao ; Huang, Chao</creator><creatorcontrib>Guo, Xuyang ; Wang, Zhuping ; Zhang, Changzhu ; Zhang, Hao ; Huang, Chao</creatorcontrib><description>For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3220960</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alternative optimization ; bilinear matrix inequalities ; Computational modeling ; Constraints ; Control algorithms ; Fuzzy control ; Fuzzy systems ; lyapunov-razumikhin ; Nonlinear systems ; Optimal control ; Optimization ; Parameter uncertainty ; Performance degradation ; Perturbation ; Predictive control ; Robust control ; robust fuzzy model predictive control ; time-varying delay ; Time-varying systems</subject><ispartof>IEEE transactions on fuzzy systems, 2023-07, Vol.31 (7), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</citedby><cites>FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</cites><orcidid>0000-0002-0334-4082 ; 0000-0001-7244-7280 ; 0000-0002-6951-8137 ; 0000-0002-5936-8227 ; 0000-0002-4527-9610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9944928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Guo, Xuyang</creatorcontrib><creatorcontrib>Wang, Zhuping</creatorcontrib><creatorcontrib>Zhang, Changzhu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><title>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.</description><subject>Algorithms</subject><subject>Alternative optimization</subject><subject>bilinear matrix inequalities</subject><subject>Computational modeling</subject><subject>Constraints</subject><subject>Control algorithms</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>lyapunov-razumikhin</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Performance degradation</subject><subject>Perturbation</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>robust fuzzy model predictive control</subject><subject>time-varying delay</subject><subject>Time-varying systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEElD4AdhYYp3iR5LaS1QoIPEStCCxiWxnDEZpDLZTKXw9LkWsZjRz7x3NybIjgseEYHE6ny1eX8cUUzpmlGJR4a1sj4iC5BizYjv1uGJ5NcHVbrYfwgfGpCgJ38tW571s81vXAHp0qg8Rzfrv7wGtJy168NBYHe0K0NR10bsWOYPmdgn5s_SD7d7QObRygAYtOg0-StuhO9e1tgPp0dMQIiwDerHxHT2kde-VjNZ14SDbMbINcPhXR9lidjGfXuU395fX07ObXFNRxlxPoDGq4ZwZA6XmxmhhsNBScWVkxSsleCN0qQiAqhSpKGsYlQVhRE7SjI2yk03up3dfPYRYf7jed-lkTTkjJSW8xElFNyrtXQgeTP3p7TI9WBNcr_nWv3zrNd_6j28yHW9MFgD-DUIUhUjRP_HGeiM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guo, Xuyang</creator><creator>Wang, Zhuping</creator><creator>Zhang, Changzhu</creator><creator>Zhang, Hao</creator><creator>Huang, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0334-4082</orcidid><orcidid>https://orcid.org/0000-0001-7244-7280</orcidid><orcidid>https://orcid.org/0000-0002-6951-8137</orcidid><orcidid>https://orcid.org/0000-0002-5936-8227</orcidid><orcidid>https://orcid.org/0000-0002-4527-9610</orcidid></search><sort><creationdate>20230701</creationdate><title>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</title><author>Guo, Xuyang ; Wang, Zhuping ; Zhang, Changzhu ; Zhang, Hao ; Huang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alternative optimization</topic><topic>bilinear matrix inequalities</topic><topic>Computational modeling</topic><topic>Constraints</topic><topic>Control algorithms</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>lyapunov-razumikhin</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Performance degradation</topic><topic>Perturbation</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>robust fuzzy model predictive control</topic><topic>time-varying delay</topic><topic>Time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xuyang</creatorcontrib><creatorcontrib>Wang, Zhuping</creatorcontrib><creatorcontrib>Zhang, Changzhu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xuyang</au><au>Wang, Zhuping</au><au>Zhang, Changzhu</au><au>Zhang, Hao</au><au>Huang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>31</volume><issue>7</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3220960</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0334-4082</orcidid><orcidid>https://orcid.org/0000-0001-7244-7280</orcidid><orcidid>https://orcid.org/0000-0002-6951-8137</orcidid><orcidid>https://orcid.org/0000-0002-5936-8227</orcidid><orcidid>https://orcid.org/0000-0002-4527-9610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2023-07, Vol.31 (7), p.1-15
issn 1063-6706
1941-0034
language eng
recordid cdi_crossref_primary_10_1109_TFUZZ_2022_3220960
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Alternative optimization
bilinear matrix inequalities
Computational modeling
Constraints
Control algorithms
Fuzzy control
Fuzzy systems
lyapunov-razumikhin
Nonlinear systems
Optimal control
Optimization
Parameter uncertainty
Performance degradation
Perturbation
Predictive control
Robust control
robust fuzzy model predictive control
time-varying delay
Time-varying systems
title Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Mode%20Robust%20Fuzzy%20Model%20Predictive%20Control%20of%20Time-Varying%20Delayed%20Uncertain%20Nonlinear%20Systems%20With%20Perturbations&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Guo,%20Xuyang&rft.date=2023-07-01&rft.volume=31&rft.issue=7&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3220960&rft_dat=%3Cproquest_cross%3E2831521850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831521850&rft_id=info:pmid/&rft_ieee_id=9944928&rfr_iscdi=true