Loading…
Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations
For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a n...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2023-07, Vol.31 (7), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3 |
container_end_page | 15 |
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 31 |
creator | Guo, Xuyang Wang, Zhuping Zhang, Changzhu Zhang, Hao Huang, Chao |
description | For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies. |
doi_str_mv | 10.1109/TFUZZ.2022.3220960 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2022_3220960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9944928</ieee_id><sourcerecordid>2831521850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEElD4AdhYYp3iR5LaS1QoIPEStCCxiWxnDEZpDLZTKXw9LkWsZjRz7x3NybIjgseEYHE6ny1eX8cUUzpmlGJR4a1sj4iC5BizYjv1uGJ5NcHVbrYfwgfGpCgJ38tW571s81vXAHp0qg8Rzfrv7wGtJy168NBYHe0K0NR10bsWOYPmdgn5s_SD7d7QObRygAYtOg0-StuhO9e1tgPp0dMQIiwDerHxHT2kde-VjNZ14SDbMbINcPhXR9lidjGfXuU395fX07ObXFNRxlxPoDGq4ZwZA6XmxmhhsNBScWVkxSsleCN0qQiAqhSpKGsYlQVhRE7SjI2yk03up3dfPYRYf7jed-lkTTkjJSW8xElFNyrtXQgeTP3p7TI9WBNcr_nWv3zrNd_6j28yHW9MFgD-DUIUhUjRP_HGeiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521850</pqid></control><display><type>article</type><title>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Guo, Xuyang ; Wang, Zhuping ; Zhang, Changzhu ; Zhang, Hao ; Huang, Chao</creator><creatorcontrib>Guo, Xuyang ; Wang, Zhuping ; Zhang, Changzhu ; Zhang, Hao ; Huang, Chao</creatorcontrib><description>For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2022.3220960</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Alternative optimization ; bilinear matrix inequalities ; Computational modeling ; Constraints ; Control algorithms ; Fuzzy control ; Fuzzy systems ; lyapunov-razumikhin ; Nonlinear systems ; Optimal control ; Optimization ; Parameter uncertainty ; Performance degradation ; Perturbation ; Predictive control ; Robust control ; robust fuzzy model predictive control ; time-varying delay ; Time-varying systems</subject><ispartof>IEEE transactions on fuzzy systems, 2023-07, Vol.31 (7), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</citedby><cites>FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</cites><orcidid>0000-0002-0334-4082 ; 0000-0001-7244-7280 ; 0000-0002-6951-8137 ; 0000-0002-5936-8227 ; 0000-0002-4527-9610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9944928$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Guo, Xuyang</creatorcontrib><creatorcontrib>Wang, Zhuping</creatorcontrib><creatorcontrib>Zhang, Changzhu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><title>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.</description><subject>Algorithms</subject><subject>Alternative optimization</subject><subject>bilinear matrix inequalities</subject><subject>Computational modeling</subject><subject>Constraints</subject><subject>Control algorithms</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>lyapunov-razumikhin</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter uncertainty</subject><subject>Performance degradation</subject><subject>Perturbation</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>robust fuzzy model predictive control</subject><subject>time-varying delay</subject><subject>Time-varying systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEElD4AdhYYp3iR5LaS1QoIPEStCCxiWxnDEZpDLZTKXw9LkWsZjRz7x3NybIjgseEYHE6ny1eX8cUUzpmlGJR4a1sj4iC5BizYjv1uGJ5NcHVbrYfwgfGpCgJ38tW571s81vXAHp0qg8Rzfrv7wGtJy168NBYHe0K0NR10bsWOYPmdgn5s_SD7d7QObRygAYtOg0-StuhO9e1tgPp0dMQIiwDerHxHT2kde-VjNZ14SDbMbINcPhXR9lidjGfXuU395fX07ObXFNRxlxPoDGq4ZwZA6XmxmhhsNBScWVkxSsleCN0qQiAqhSpKGsYlQVhRE7SjI2yk03up3dfPYRYf7jed-lkTTkjJSW8xElFNyrtXQgeTP3p7TI9WBNcr_nWv3zrNd_6j28yHW9MFgD-DUIUhUjRP_HGeiM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Guo, Xuyang</creator><creator>Wang, Zhuping</creator><creator>Zhang, Changzhu</creator><creator>Zhang, Hao</creator><creator>Huang, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0334-4082</orcidid><orcidid>https://orcid.org/0000-0001-7244-7280</orcidid><orcidid>https://orcid.org/0000-0002-6951-8137</orcidid><orcidid>https://orcid.org/0000-0002-5936-8227</orcidid><orcidid>https://orcid.org/0000-0002-4527-9610</orcidid></search><sort><creationdate>20230701</creationdate><title>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</title><author>Guo, Xuyang ; Wang, Zhuping ; Zhang, Changzhu ; Zhang, Hao ; Huang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alternative optimization</topic><topic>bilinear matrix inequalities</topic><topic>Computational modeling</topic><topic>Constraints</topic><topic>Control algorithms</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>lyapunov-razumikhin</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter uncertainty</topic><topic>Performance degradation</topic><topic>Perturbation</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>robust fuzzy model predictive control</topic><topic>time-varying delay</topic><topic>Time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xuyang</creatorcontrib><creatorcontrib>Wang, Zhuping</creatorcontrib><creatorcontrib>Zhang, Changzhu</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Huang, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xuyang</au><au>Wang, Zhuping</au><au>Zhang, Changzhu</au><au>Zhang, Hao</au><au>Huang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>31</volume><issue>7</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>For time-varying delayed nonlinear systems with parameter uncertainties and persistent disturbances, an online and an offline robust fuzzy model predictive control (RFMPC) algorithms are proposed in this paper. Both methods guarantee the input-to-state stability (ISS) of the system. Furthermore, a novel alternative optimization (AOP) approach and a dual-mode OP/AOP strategy are proposed to prevent the performance deterioration of the online optimal control (OP) approach due to the challenges in addressing the bilinear matrix inequality (BMI) constraints. With the established AOP and dual-mode OP/AOP techniques, the optimization problem constrained by BMIs is transformed into convex, and a significantly more precise approximation of the ellipsoidal minimal robust positively invariant (EmRPI) set can be calculated. Besides, the system can eventually converge into a more compact ellipsoidal set. These two alternative optimization methods can be easily extended to various nonlinear systems. A numerical example and a continuous-time stirring tank (CSTR) example are provided to validate the effectiveness and advantages of the established methodologies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2022.3220960</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0334-4082</orcidid><orcidid>https://orcid.org/0000-0001-7244-7280</orcidid><orcidid>https://orcid.org/0000-0002-6951-8137</orcidid><orcidid>https://orcid.org/0000-0002-5936-8227</orcidid><orcidid>https://orcid.org/0000-0002-4527-9610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2023-07, Vol.31 (7), p.1-15 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TFUZZ_2022_3220960 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Alternative optimization bilinear matrix inequalities Computational modeling Constraints Control algorithms Fuzzy control Fuzzy systems lyapunov-razumikhin Nonlinear systems Optimal control Optimization Parameter uncertainty Performance degradation Perturbation Predictive control Robust control robust fuzzy model predictive control time-varying delay Time-varying systems |
title | Dual-Mode Robust Fuzzy Model Predictive Control of Time-Varying Delayed Uncertain Nonlinear Systems With Perturbations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Mode%20Robust%20Fuzzy%20Model%20Predictive%20Control%20of%20Time-Varying%20Delayed%20Uncertain%20Nonlinear%20Systems%20With%20Perturbations&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Guo,%20Xuyang&rft.date=2023-07-01&rft.volume=31&rft.issue=7&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2022.3220960&rft_dat=%3Cproquest_cross%3E2831521850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-c7edfbd883ffe5c8ffc9f09cab8bfa686b98d9c5b1eeb6b1623d32a4131a71ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831521850&rft_id=info:pmid/&rft_ieee_id=9944928&rfr_iscdi=true |