Loading…
ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing
With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC'...
Saved in:
Published in: | IEEE transactions on green communications and networking 2022-03, Vol.6 (1), p.238-247 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3 |
container_end_page | 247 |
container_issue | 1 |
container_start_page | 238 |
container_title | IEEE transactions on green communications and networking |
container_volume | 6 |
creator | Zhou, Zhou Shojafar, Mohammad Abawajy, Jemal Yin, Hui Lu, Hongming |
description | With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC's carbon footprint in accordance with green computing and sustainable development. However, predicting energy consumption of edge servers is a nontrivial problem due to the fluctuation and variation of different loads. To address this problem, we propose ECMS, a new edge intelligent energy modeling approach that jointly adopts Elman Neural Network (ENN) and feature selection to optimize the consumption of energy on edge servers. ECMS considers 29 parameters relevant to edge server energy consumption and uses the ENN to develop an energy consumption model. Unlike other energy consumption models, ECMS can successfully deal with load fluctuation and various sorts of tasks, such as CPU-intensive, online transaction-intensive, and I/O-intensive. We have validated ECMS through extensive experiments and compared its performance in terms of accuracy and training time to several baseline approaches. The experimental results show the superiority of ECMS to the baseline models. We believe that the proposed model can be used by the MEC resource providers to forecast and optimize energy use. |
doi_str_mv | 10.1109/TGCN.2021.3121961 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGCN_2021_3121961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583599</ieee_id><sourcerecordid>2629125110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsNT-APES8Jy4H8mm462EWAutHqznZbOZhC3ppm7SQ_-9CSniaV6G552Bh5BHRiPGKLzs19lHxClnkWCcgWQ3ZMbjVIQ8pvT2X74ni647UEo5JEyCmJFNnu2-XoOVC_KyxmDjemwaW6Prg9yhry9BXlXW2HGxa0tsAuuGUNgGp0bWHk_n3rr6gdxVuulwcZ1z8v2W77P3cPu53mSrbWg4iD6MOWgGWlJkRQUIVBqtDWoqdVIAmFLQlBsaoyzSWKa8inVRoqmWRZkiJEbMyfN09-TbnzN2vTq0Z--Gl4pLDowng5OBYhNlfNt1Hit18vao_UUxqkZpapSmRmnqKm3oPE0di4h_PCRLkQCIXyEzZqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629125110</pqid></control><display><type>article</type><title>ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing</title><source>IEEE Xplore (Online service)</source><creator>Zhou, Zhou ; Shojafar, Mohammad ; Abawajy, Jemal ; Yin, Hui ; Lu, Hongming</creator><creatorcontrib>Zhou, Zhou ; Shojafar, Mohammad ; Abawajy, Jemal ; Yin, Hui ; Lu, Hongming</creatorcontrib><description>With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC's carbon footprint in accordance with green computing and sustainable development. However, predicting energy consumption of edge servers is a nontrivial problem due to the fluctuation and variation of different loads. To address this problem, we propose ECMS, a new edge intelligent energy modeling approach that jointly adopts Elman Neural Network (ENN) and feature selection to optimize the consumption of energy on edge servers. ECMS considers 29 parameters relevant to edge server energy consumption and uses the ENN to develop an energy consumption model. Unlike other energy consumption models, ECMS can successfully deal with load fluctuation and various sorts of tasks, such as CPU-intensive, online transaction-intensive, and I/O-intensive. We have validated ECMS through extensive experiments and compared its performance in terms of accuracy and training time to several baseline approaches. The experimental results show the superiority of ECMS to the baseline models. We believe that the proposed model can be used by the MEC resource providers to forecast and optimize energy use.</description><identifier>ISSN: 2473-2400</identifier><identifier>EISSN: 2473-2400</identifier><identifier>DOI: 10.1109/TGCN.2021.3121961</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Data models ; Edge computing ; Elman Neural Network (ENN) ; Energy consumption ; Energy Prediction and Measurement ; Feature extraction ; Green Computing ; Internet of Things ; Load fluctuation ; Load modeling ; Mobile computing ; Mobile Edge Computing (MEC) ; Neural networks ; Servers ; Sustainable development</subject><ispartof>IEEE transactions on green communications and networking, 2022-03, Vol.6 (1), p.238-247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3</citedby><cites>FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3</cites><orcidid>0000-0001-5302-1372 ; 0000-0003-3284-5086 ; 0000-0001-8962-1222 ; 0000-0002-4787-9660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9583599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Shojafar, Mohammad</creatorcontrib><creatorcontrib>Abawajy, Jemal</creatorcontrib><creatorcontrib>Yin, Hui</creatorcontrib><creatorcontrib>Lu, Hongming</creatorcontrib><title>ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing</title><title>IEEE transactions on green communications and networking</title><addtitle>TGCN</addtitle><description>With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC's carbon footprint in accordance with green computing and sustainable development. However, predicting energy consumption of edge servers is a nontrivial problem due to the fluctuation and variation of different loads. To address this problem, we propose ECMS, a new edge intelligent energy modeling approach that jointly adopts Elman Neural Network (ENN) and feature selection to optimize the consumption of energy on edge servers. ECMS considers 29 parameters relevant to edge server energy consumption and uses the ENN to develop an energy consumption model. Unlike other energy consumption models, ECMS can successfully deal with load fluctuation and various sorts of tasks, such as CPU-intensive, online transaction-intensive, and I/O-intensive. We have validated ECMS through extensive experiments and compared its performance in terms of accuracy and training time to several baseline approaches. The experimental results show the superiority of ECMS to the baseline models. We believe that the proposed model can be used by the MEC resource providers to forecast and optimize energy use.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Edge computing</subject><subject>Elman Neural Network (ENN)</subject><subject>Energy consumption</subject><subject>Energy Prediction and Measurement</subject><subject>Feature extraction</subject><subject>Green Computing</subject><subject>Internet of Things</subject><subject>Load fluctuation</subject><subject>Load modeling</subject><subject>Mobile computing</subject><subject>Mobile Edge Computing (MEC)</subject><subject>Neural networks</subject><subject>Servers</subject><subject>Sustainable development</subject><issn>2473-2400</issn><issn>2473-2400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsNT-APES8Jy4H8mm462EWAutHqznZbOZhC3ppm7SQ_-9CSniaV6G552Bh5BHRiPGKLzs19lHxClnkWCcgWQ3ZMbjVIQ8pvT2X74ni647UEo5JEyCmJFNnu2-XoOVC_KyxmDjemwaW6Prg9yhry9BXlXW2HGxa0tsAuuGUNgGp0bWHk_n3rr6gdxVuulwcZ1z8v2W77P3cPu53mSrbWg4iD6MOWgGWlJkRQUIVBqtDWoqdVIAmFLQlBsaoyzSWKa8inVRoqmWRZkiJEbMyfN09-TbnzN2vTq0Z--Gl4pLDowng5OBYhNlfNt1Hit18vao_UUxqkZpapSmRmnqKm3oPE0di4h_PCRLkQCIXyEzZqU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhou, Zhou</creator><creator>Shojafar, Mohammad</creator><creator>Abawajy, Jemal</creator><creator>Yin, Hui</creator><creator>Lu, Hongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5302-1372</orcidid><orcidid>https://orcid.org/0000-0003-3284-5086</orcidid><orcidid>https://orcid.org/0000-0001-8962-1222</orcidid><orcidid>https://orcid.org/0000-0002-4787-9660</orcidid></search><sort><creationdate>20220301</creationdate><title>ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing</title><author>Zhou, Zhou ; Shojafar, Mohammad ; Abawajy, Jemal ; Yin, Hui ; Lu, Hongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Edge computing</topic><topic>Elman Neural Network (ENN)</topic><topic>Energy consumption</topic><topic>Energy Prediction and Measurement</topic><topic>Feature extraction</topic><topic>Green Computing</topic><topic>Internet of Things</topic><topic>Load fluctuation</topic><topic>Load modeling</topic><topic>Mobile computing</topic><topic>Mobile Edge Computing (MEC)</topic><topic>Neural networks</topic><topic>Servers</topic><topic>Sustainable development</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhou</creatorcontrib><creatorcontrib>Shojafar, Mohammad</creatorcontrib><creatorcontrib>Abawajy, Jemal</creatorcontrib><creatorcontrib>Yin, Hui</creatorcontrib><creatorcontrib>Lu, Hongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on green communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhou</au><au>Shojafar, Mohammad</au><au>Abawajy, Jemal</au><au>Yin, Hui</au><au>Lu, Hongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing</atitle><jtitle>IEEE transactions on green communications and networking</jtitle><stitle>TGCN</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>6</volume><issue>1</issue><spage>238</spage><epage>247</epage><pages>238-247</pages><issn>2473-2400</issn><eissn>2473-2400</eissn><abstract>With the increasing popularity of mobile edge computing (MEC) for processing intensive and delay sensitive IoT applications, the problem of high energy consumption of MEC has become a significant concern. Energy consumption prediction and monitoring of edge servers are crucial for reducing MEC's carbon footprint in accordance with green computing and sustainable development. However, predicting energy consumption of edge servers is a nontrivial problem due to the fluctuation and variation of different loads. To address this problem, we propose ECMS, a new edge intelligent energy modeling approach that jointly adopts Elman Neural Network (ENN) and feature selection to optimize the consumption of energy on edge servers. ECMS considers 29 parameters relevant to edge server energy consumption and uses the ENN to develop an energy consumption model. Unlike other energy consumption models, ECMS can successfully deal with load fluctuation and various sorts of tasks, such as CPU-intensive, online transaction-intensive, and I/O-intensive. We have validated ECMS through extensive experiments and compared its performance in terms of accuracy and training time to several baseline approaches. The experimental results show the superiority of ECMS to the baseline models. We believe that the proposed model can be used by the MEC resource providers to forecast and optimize energy use.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TGCN.2021.3121961</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5302-1372</orcidid><orcidid>https://orcid.org/0000-0003-3284-5086</orcidid><orcidid>https://orcid.org/0000-0001-8962-1222</orcidid><orcidid>https://orcid.org/0000-0002-4787-9660</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-2400 |
ispartof | IEEE transactions on green communications and networking, 2022-03, Vol.6 (1), p.238-247 |
issn | 2473-2400 2473-2400 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGCN_2021_3121961 |
source | IEEE Xplore (Online service) |
subjects | Computational modeling Data models Edge computing Elman Neural Network (ENN) Energy consumption Energy Prediction and Measurement Feature extraction Green Computing Internet of Things Load fluctuation Load modeling Mobile computing Mobile Edge Computing (MEC) Neural networks Servers Sustainable development |
title | ECMS: An Edge Intelligent Energy Efficient Model in Mobile Edge Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECMS:%20An%20Edge%20Intelligent%20Energy%20Efficient%20Model%20in%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20green%20communications%20and%20networking&rft.au=Zhou,%20Zhou&rft.date=2022-03-01&rft.volume=6&rft.issue=1&rft.spage=238&rft.epage=247&rft.pages=238-247&rft.issn=2473-2400&rft.eissn=2473-2400&rft_id=info:doi/10.1109/TGCN.2021.3121961&rft_dat=%3Cproquest_cross%3E2629125110%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-429a19a60e1bf9e906caacea06a5b99cd3072c04e6b74672f4abdecf8bd7e95c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629125110&rft_id=info:pmid/&rft_ieee_id=9583599&rfr_iscdi=true |