Loading…
AIRS radiance validation over ocean from sea surface temperature measurements
Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measuremen...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2003-02, Vol.41 (2), p.432-441 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measurements, ship radiometric observations and mapped sea surface temperature products during the first six months after launch. The focus of the validation is on AIRS channel radiances in narrow spectral window regions located between 800-1250 cm/sup -1/ and between 2500 and 2700 cm/sup -1/. Simulated AIRS brightness temperatures are compared to in situ and satellite-based observations of sea surface temperature colocated in time and space, to demonstrate accuracies that can be achieved in clear atmospheres. An error budget, derived from single channel, single footprint matchups, indicates AIRS can be validated to better than 1% in absolute radiance (equivalent to 0.5 K in brightness temperature, at 300 K and 938 cm/sup -1/) during early mission operations. The eventual goal is to validate instrument radiances close to the demonstrated prelaunch calibration accuracy of about 0.4% (equivalent to 0.2 K in brightness temperature, at 300 K and 938 cm/sup -1/). |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2002.808316 |