Loading…
Operational and Performance Considerations of Radiative-Transfer Modeling in Hyperspectral Target Detection
Accounting for radiative transfer within the atmosphere is usually necessary to accomplish target detection in airborne/satellite hyperspectral images. In this paper, two methods of accounting for the illumination and atmospheric effects-atmospheric compensation (AC) and forward modeling (FM)-are in...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2011-04, Vol.49 (4), p.1343-1355 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accounting for radiative transfer within the atmosphere is usually necessary to accomplish target detection in airborne/satellite hyperspectral images. In this paper, two methods of accounting for the illumination and atmospheric effects-atmospheric compensation (AC) and forward modeling (FM)-are investigated in their application to target detection. Specifically, several crucial aspects are examined, such as the processing required, the computational complexity, and the flexibility accorded to an imperfect knowledge of acquisition conditions. Real ground-truthed hyperspectral data are employed in order to evaluate the operational applicability of such approaches in a target-detection scenario, as well as their impact on the processing-chain computational complexity. Results indicate that AC is recommended when accurate knowledge of the acquisition conditions is available, and the image has relatively uniform illumination and nonshadowed targets. Conversely, FM is preferred if scene conditions are not well known and when the targets may be subject to varying illumination conditions, including shadowing. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2010.2081371 |