Loading…
Buried-Object Time-Reversal Imaging Using UWB Near-Ground Scattered Fields
In this paper, the problem of time-reversal imaging (TRI) of buried dielectric and metallic targets under Gaussian rough surfaces is studied. For the scattering problem, a parallel finite-difference time-domain technique is used. Using a multistatic scattering matrix of a TR operator at a frequency...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2014-11, Vol.52 (11), p.7317-7326 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the problem of time-reversal imaging (TRI) of buried dielectric and metallic targets under Gaussian rough surfaces is studied. For the scattering problem, a parallel finite-difference time-domain technique is used. Using a multistatic scattering matrix of a TR operator at a frequency range of 0.5-2.5 GHz, ultrawideband (UWB) TR multiple signal classification images are calculated. First, to reduce the clutter influence, near-ground UWB scattered fields are used. It is shown that employing received signals near the ground instead of those at the transmitter height improves the signal-to-clutter power ratio by at least 10 dB at 1 GHz. Second, a time-gated (TG) TRI algorithm is proposed to better detect and localize buried targets in the presence of clutter. Third, once the TG TR images are obtained, best single-frequency TR images are calculated, yielding even better target localization. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2014.2311131 |