Loading…

Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images

The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2015-04, Vol.53 (4), p.2039-2049
Main Authors: Naizhuo Zhao, Yuyu Zhou, Samson, Eric L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3
cites cdi_FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3
container_end_page 2049
container_issue 4
container_start_page 2039
container_title IEEE transactions on geoscience and remote sensing
container_volume 53
creator Naizhuo Zhao
Yuyu Zhou
Samson, Eric L.
description The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multiyear quantitative research. In this paper, we extend and improve previous studies on intercalibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time-series (NLT) image data for China and the U.S. through four steps, namely, intercalibration, geometric correction, steady-increase adjustment, and population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008, respectively, and the U.S. showed nighttime lights decay in large areas after 2001.
doi_str_mv 10.1109/TGRS.2014.2352598
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2014_2352598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6905742</ieee_id><sourcerecordid>3625031691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3</originalsourceid><addsrcrecordid>eNqN0TFvEzEYBmALgUQo_ADEYsHCcqk_n-2zRxRKiBS1UhvYkOU636Wu7s7Bdgb-PT6lYmDq5G94XkuvXkLeA1sCMHO5W9_eLTkDseSt5NLoF2QBUuqGKSFekgUDoxquDX9N3uT8yKqU0C3Ir1VMCX0J04FuJh_HoyvhfkD69Zr-dMMJM3XTnq4xjlhS8PQqpZgyDRO9DoeHUsKIdDtfme7q3dxhCjW0Gd0B81vyqndDxndP7wX58e1qt_rebG_Wm9WXbeNFK0qjWm1wj84YjYYb6b0WUvegO-M1k8Jp6HkvvQMnXO-509jfy72WTnWm7Xx7QT6e_425BJt9KOgffJym2swCKKVBV_T5jI4p_q7Fih1D9jgMbsJ4yrYyYxhwgOdQ1hqp1Uw__Ucf4ylNte2sWlWnEG1VcFY-xZwT9vaYwujSHwvMzgPaeUA7D2ifBqyZD-dMQMR_XhkmO8Hbv-stlVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663659843</pqid></control><display><type>article</type><title>Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Naizhuo Zhao ; Yuyu Zhou ; Samson, Eric L.</creator><creatorcontrib>Naizhuo Zhao ; Yuyu Zhou ; Samson, Eric L. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multiyear quantitative research. In this paper, we extend and improve previous studies on intercalibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time-series (NLT) image data for China and the U.S. through four steps, namely, intercalibration, geometric correction, steady-increase adjustment, and population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008, respectively, and the U.S. showed nighttime lights decay in large areas after 2001.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2014.2352598</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Brightness ; Calibration ; China ; Digital imaging ; DMSP satellites ; Economic indicators ; Economics ; GDP ; Geometric error ; Gross Domestic Product ; gross domestic product (GDP) ; Light ; Meteorological satellites ; Night ; nighttime lights development/decay ; nighttime lights time series (NLT) images ; OTHER INSTRUMENTATION ; Remote sensing ; Satellites ; Sociology ; Statistics ; Trends ; Urban areas ; Urbanization</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-04, Vol.53 (4), p.2039-2049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3</citedby><cites>FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6905742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1166818$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Naizhuo Zhao</creatorcontrib><creatorcontrib>Yuyu Zhou</creatorcontrib><creatorcontrib>Samson, Eric L.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multiyear quantitative research. In this paper, we extend and improve previous studies on intercalibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time-series (NLT) image data for China and the U.S. through four steps, namely, intercalibration, geometric correction, steady-increase adjustment, and population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008, respectively, and the U.S. showed nighttime lights decay in large areas after 2001.</description><subject>Brightness</subject><subject>Calibration</subject><subject>China</subject><subject>Digital imaging</subject><subject>DMSP satellites</subject><subject>Economic indicators</subject><subject>Economics</subject><subject>GDP</subject><subject>Geometric error</subject><subject>Gross Domestic Product</subject><subject>gross domestic product (GDP)</subject><subject>Light</subject><subject>Meteorological satellites</subject><subject>Night</subject><subject>nighttime lights development/decay</subject><subject>nighttime lights time series (NLT) images</subject><subject>OTHER INSTRUMENTATION</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Trends</subject><subject>Urban areas</subject><subject>Urbanization</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0TFvEzEYBmALgUQo_ADEYsHCcqk_n-2zRxRKiBS1UhvYkOU636Wu7s7Bdgb-PT6lYmDq5G94XkuvXkLeA1sCMHO5W9_eLTkDseSt5NLoF2QBUuqGKSFekgUDoxquDX9N3uT8yKqU0C3Ir1VMCX0J04FuJh_HoyvhfkD69Zr-dMMJM3XTnq4xjlhS8PQqpZgyDRO9DoeHUsKIdDtfme7q3dxhCjW0Gd0B81vyqndDxndP7wX58e1qt_rebG_Wm9WXbeNFK0qjWm1wj84YjYYb6b0WUvegO-M1k8Jp6HkvvQMnXO-509jfy72WTnWm7Xx7QT6e_425BJt9KOgffJym2swCKKVBV_T5jI4p_q7Fih1D9jgMbsJ4yrYyYxhwgOdQ1hqp1Uw__Ucf4ylNte2sWlWnEG1VcFY-xZwT9vaYwujSHwvMzgPaeUA7D2ifBqyZD-dMQMR_XhkmO8Hbv-stlVQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Naizhuo Zhao</creator><creator>Yuyu Zhou</creator><creator>Samson, Eric L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>7SP</scope><scope>F28</scope><scope>OTOTI</scope></search><sort><creationdate>20150401</creationdate><title>Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images</title><author>Naizhuo Zhao ; Yuyu Zhou ; Samson, Eric L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brightness</topic><topic>Calibration</topic><topic>China</topic><topic>Digital imaging</topic><topic>DMSP satellites</topic><topic>Economic indicators</topic><topic>Economics</topic><topic>GDP</topic><topic>Geometric error</topic><topic>Gross Domestic Product</topic><topic>gross domestic product (GDP)</topic><topic>Light</topic><topic>Meteorological satellites</topic><topic>Night</topic><topic>nighttime lights development/decay</topic><topic>nighttime lights time series (NLT) images</topic><topic>OTHER INSTRUMENTATION</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Trends</topic><topic>Urban areas</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naizhuo Zhao</creatorcontrib><creatorcontrib>Yuyu Zhou</creatorcontrib><creatorcontrib>Samson, Eric L.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naizhuo Zhao</au><au>Yuyu Zhou</au><au>Samson, Eric L.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>53</volume><issue>4</issue><spage>2039</spage><epage>2049</epage><pages>2039-2049</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multiyear quantitative research. In this paper, we extend and improve previous studies on intercalibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time-series (NLT) image data for China and the U.S. through four steps, namely, intercalibration, geometric correction, steady-increase adjustment, and population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008, respectively, and the U.S. showed nighttime lights decay in large areas after 2001.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2014.2352598</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2015-04, Vol.53 (4), p.2039-2049
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2014_2352598
source IEEE Electronic Library (IEL) Journals
subjects Brightness
Calibration
China
Digital imaging
DMSP satellites
Economic indicators
Economics
GDP
Geometric error
Gross Domestic Product
gross domestic product (GDP)
Light
Meteorological satellites
Night
nighttime lights development/decay
nighttime lights time series (NLT) images
OTHER INSTRUMENTATION
Remote sensing
Satellites
Sociology
Statistics
Trends
Urban areas
Urbanization
title Correcting Incompatible DN Values and Geometric Errors in Nighttime Lights Time-Series Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20Incompatible%20DN%20Values%20and%20Geometric%20Errors%20in%20Nighttime%20Lights%20Time-Series%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Naizhuo%20Zhao&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-04-01&rft.volume=53&rft.issue=4&rft.spage=2039&rft.epage=2049&rft.pages=2039-2049&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2014.2352598&rft_dat=%3Cproquest_cross%3E3625031691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-6389edea998e9295cc8458f1879c8054a81f2f5ca1a4afc2a8efb5d85a67937c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1663659843&rft_id=info:pmid/&rft_ieee_id=6905742&rfr_iscdi=true