Loading…

A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map

Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2018-09, Vol.56 (9), p.5471-5480
Main Authors: Hu, Guo-Ping, Chan, Kwing Lam, Zheng, Yong-Chun, Xu, Ao-Ao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3
cites cdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3
container_end_page 5480
container_issue 9
container_start_page 5471
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Hu, Guo-Ping
Chan, Kwing Lam
Zheng, Yong-Chun
Xu, Ao-Ao
description Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.
doi_str_mv 10.1109/TGRS.2018.2817654
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2018_2817654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8344548</ieee_id><sourcerecordid>2117149920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</originalsourceid><addsrcrecordid>eNo9kEFPwjAUxxujiYh-AOOliQdPw75uXdcjEgQTiQngycNSulcYwjrbofHbOzLi6R3e7_9_Lz9CboENAJh6XE7miwFnkA14BjIVyRnpgRBZxNIkOSc9BiqNeKb4JbkKYcsYJAJkj3wM6dyZTzpzBe6odZ42G6Qjtyuorgo6dQ1d1K4JtKy6zUZX64cxnZXGux_9jfTJl-tNU2EIdIn7Gr1uDh7pTNfX5MLqXcCb0-yT9-fxcjSNXt8mL6Pha2S4iptIGlPE1soVGlxlmZFWyRRRFCwGI4EZJjA2QqFVGlZpYUAURjPLpY05Nzruk_uut_bu64Chybfu4Kv2ZM4BJCRKcdZS0FHt4yF4tHnty732vzmw_OgwPzrMjw7zk8M2c9dlSkT857M4SUSSxX-Ak21B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149920</pqid></control><display><type>article</type><title>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</title><source>IEEE Xplore (Online service)</source><creator>Hu, Guo-Ping ; Chan, Kwing Lam ; Zheng, Yong-Chun ; Xu, Ao-Ao</creator><creatorcontrib>Hu, Guo-Ping ; Chan, Kwing Lam ; Zheng, Yong-Chun ; Xu, Ao-Ao</creatorcontrib><description>Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2817654</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric particulates ; Bright spots ; Brightness ; Brightness temperature ; Chang’E (CE) ; Computer simulation ; Craters ; Dust storms ; Electromagnetic heating ; Hot spots ; Ilmenite ; Iron ; Latitude ; microwave brightness temperature (TB) ; Microwave measurement ; Microwave radiometers ; Mixed layer ; Moon ; Multilayers ; Parameter uncertainty ; radiation transfer model ; Radiometers ; Regolith ; Rock ; Rocks ; Soil ; Specific heat ; Surface radiation temperature ; Surface topography ; Temperature ; Thermal conductivity ; Thermal properties ; Thermodynamic properties ; Titanium ; Topographic effects</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-09, Vol.56 (9), p.5471-5480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</citedby><cites>FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</cites><orcidid>0000-0001-5743-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8344548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Hu, Guo-Ping</creatorcontrib><creatorcontrib>Chan, Kwing Lam</creatorcontrib><creatorcontrib>Zheng, Yong-Chun</creatorcontrib><creatorcontrib>Xu, Ao-Ao</creatorcontrib><title>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.</description><subject>Atmospheric particulates</subject><subject>Bright spots</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Chang’E (CE)</subject><subject>Computer simulation</subject><subject>Craters</subject><subject>Dust storms</subject><subject>Electromagnetic heating</subject><subject>Hot spots</subject><subject>Ilmenite</subject><subject>Iron</subject><subject>Latitude</subject><subject>microwave brightness temperature (TB)</subject><subject>Microwave measurement</subject><subject>Microwave radiometers</subject><subject>Mixed layer</subject><subject>Moon</subject><subject>Multilayers</subject><subject>Parameter uncertainty</subject><subject>radiation transfer model</subject><subject>Radiometers</subject><subject>Regolith</subject><subject>Rock</subject><subject>Rocks</subject><subject>Soil</subject><subject>Specific heat</subject><subject>Surface radiation temperature</subject><subject>Surface topography</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Titanium</subject><subject>Topographic effects</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAUxxujiYh-AOOliQdPw75uXdcjEgQTiQngycNSulcYwjrbofHbOzLi6R3e7_9_Lz9CboENAJh6XE7miwFnkA14BjIVyRnpgRBZxNIkOSc9BiqNeKb4JbkKYcsYJAJkj3wM6dyZTzpzBe6odZ42G6Qjtyuorgo6dQ1d1K4JtKy6zUZX64cxnZXGux_9jfTJl-tNU2EIdIn7Gr1uDh7pTNfX5MLqXcCb0-yT9-fxcjSNXt8mL6Pha2S4iptIGlPE1soVGlxlmZFWyRRRFCwGI4EZJjA2QqFVGlZpYUAURjPLpY05Nzruk_uut_bu64Chybfu4Kv2ZM4BJCRKcdZS0FHt4yF4tHnty732vzmw_OgwPzrMjw7zk8M2c9dlSkT857M4SUSSxX-Ak21B</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Hu, Guo-Ping</creator><creator>Chan, Kwing Lam</creator><creator>Zheng, Yong-Chun</creator><creator>Xu, Ao-Ao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5743-5417</orcidid></search><sort><creationdate>20180901</creationdate><title>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</title><author>Hu, Guo-Ping ; Chan, Kwing Lam ; Zheng, Yong-Chun ; Xu, Ao-Ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric particulates</topic><topic>Bright spots</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Chang’E (CE)</topic><topic>Computer simulation</topic><topic>Craters</topic><topic>Dust storms</topic><topic>Electromagnetic heating</topic><topic>Hot spots</topic><topic>Ilmenite</topic><topic>Iron</topic><topic>Latitude</topic><topic>microwave brightness temperature (TB)</topic><topic>Microwave measurement</topic><topic>Microwave radiometers</topic><topic>Mixed layer</topic><topic>Moon</topic><topic>Multilayers</topic><topic>Parameter uncertainty</topic><topic>radiation transfer model</topic><topic>Radiometers</topic><topic>Regolith</topic><topic>Rock</topic><topic>Rocks</topic><topic>Soil</topic><topic>Specific heat</topic><topic>Surface radiation temperature</topic><topic>Surface topography</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Titanium</topic><topic>Topographic effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guo-Ping</creatorcontrib><creatorcontrib>Chan, Kwing Lam</creatorcontrib><creatorcontrib>Zheng, Yong-Chun</creatorcontrib><creatorcontrib>Xu, Ao-Ao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guo-Ping</au><au>Chan, Kwing Lam</au><au>Zheng, Yong-Chun</au><au>Xu, Ao-Ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>56</volume><issue>9</issue><spage>5471</spage><epage>5480</epage><pages>5471-5480</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2817654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5743-5417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-09, Vol.56 (9), p.5471-5480
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2018_2817654
source IEEE Xplore (Online service)
subjects Atmospheric particulates
Bright spots
Brightness
Brightness temperature
Chang’E (CE)
Computer simulation
Craters
Dust storms
Electromagnetic heating
Hot spots
Ilmenite
Iron
Latitude
microwave brightness temperature (TB)
Microwave measurement
Microwave radiometers
Mixed layer
Moon
Multilayers
Parameter uncertainty
radiation transfer model
Radiometers
Regolith
Rock
Rocks
Soil
Specific heat
Surface radiation temperature
Surface topography
Temperature
Thermal conductivity
Thermal properties
Thermodynamic properties
Titanium
Topographic effects
title A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rock%20Model%20for%20the%20Cold%20and%20Hot%20Spots%20in%20the%20Chang'E%20Microwave%20Brightness%20Temperature%20Map&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hu,%20Guo-Ping&rft.date=2018-09-01&rft.volume=56&rft.issue=9&rft.spage=5471&rft.epage=5480&rft.pages=5471-5480&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2817654&rft_dat=%3Cproquest_cross%3E2117149920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117149920&rft_id=info:pmid/&rft_ieee_id=8344548&rfr_iscdi=true