Loading…
A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map
Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profi...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2018-09, Vol.56 (9), p.5471-5480 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3 |
container_end_page | 5480 |
container_issue | 9 |
container_start_page | 5471 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Hu, Guo-Ping Chan, Kwing Lam Zheng, Yong-Chun Xu, Ao-Ao |
description | Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map. |
doi_str_mv | 10.1109/TGRS.2018.2817654 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2018_2817654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8344548</ieee_id><sourcerecordid>2117149920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</originalsourceid><addsrcrecordid>eNo9kEFPwjAUxxujiYh-AOOliQdPw75uXdcjEgQTiQngycNSulcYwjrbofHbOzLi6R3e7_9_Lz9CboENAJh6XE7miwFnkA14BjIVyRnpgRBZxNIkOSc9BiqNeKb4JbkKYcsYJAJkj3wM6dyZTzpzBe6odZ42G6Qjtyuorgo6dQ1d1K4JtKy6zUZX64cxnZXGux_9jfTJl-tNU2EIdIn7Gr1uDh7pTNfX5MLqXcCb0-yT9-fxcjSNXt8mL6Pha2S4iptIGlPE1soVGlxlmZFWyRRRFCwGI4EZJjA2QqFVGlZpYUAURjPLpY05Nzruk_uut_bu64Chybfu4Kv2ZM4BJCRKcdZS0FHt4yF4tHnty732vzmw_OgwPzrMjw7zk8M2c9dlSkT857M4SUSSxX-Ak21B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149920</pqid></control><display><type>article</type><title>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</title><source>IEEE Xplore (Online service)</source><creator>Hu, Guo-Ping ; Chan, Kwing Lam ; Zheng, Yong-Chun ; Xu, Ao-Ao</creator><creatorcontrib>Hu, Guo-Ping ; Chan, Kwing Lam ; Zheng, Yong-Chun ; Xu, Ao-Ao</creatorcontrib><description>Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2817654</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric particulates ; Bright spots ; Brightness ; Brightness temperature ; Chang’E (CE) ; Computer simulation ; Craters ; Dust storms ; Electromagnetic heating ; Hot spots ; Ilmenite ; Iron ; Latitude ; microwave brightness temperature (TB) ; Microwave measurement ; Microwave radiometers ; Mixed layer ; Moon ; Multilayers ; Parameter uncertainty ; radiation transfer model ; Radiometers ; Regolith ; Rock ; Rocks ; Soil ; Specific heat ; Surface radiation temperature ; Surface topography ; Temperature ; Thermal conductivity ; Thermal properties ; Thermodynamic properties ; Titanium ; Topographic effects</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-09, Vol.56 (9), p.5471-5480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</citedby><cites>FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</cites><orcidid>0000-0001-5743-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8344548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Hu, Guo-Ping</creatorcontrib><creatorcontrib>Chan, Kwing Lam</creatorcontrib><creatorcontrib>Zheng, Yong-Chun</creatorcontrib><creatorcontrib>Xu, Ao-Ao</creatorcontrib><title>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.</description><subject>Atmospheric particulates</subject><subject>Bright spots</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Chang’E (CE)</subject><subject>Computer simulation</subject><subject>Craters</subject><subject>Dust storms</subject><subject>Electromagnetic heating</subject><subject>Hot spots</subject><subject>Ilmenite</subject><subject>Iron</subject><subject>Latitude</subject><subject>microwave brightness temperature (TB)</subject><subject>Microwave measurement</subject><subject>Microwave radiometers</subject><subject>Mixed layer</subject><subject>Moon</subject><subject>Multilayers</subject><subject>Parameter uncertainty</subject><subject>radiation transfer model</subject><subject>Radiometers</subject><subject>Regolith</subject><subject>Rock</subject><subject>Rocks</subject><subject>Soil</subject><subject>Specific heat</subject><subject>Surface radiation temperature</subject><subject>Surface topography</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Titanium</subject><subject>Topographic effects</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAUxxujiYh-AOOliQdPw75uXdcjEgQTiQngycNSulcYwjrbofHbOzLi6R3e7_9_Lz9CboENAJh6XE7miwFnkA14BjIVyRnpgRBZxNIkOSc9BiqNeKb4JbkKYcsYJAJkj3wM6dyZTzpzBe6odZ42G6Qjtyuorgo6dQ1d1K4JtKy6zUZX64cxnZXGux_9jfTJl-tNU2EIdIn7Gr1uDh7pTNfX5MLqXcCb0-yT9-fxcjSNXt8mL6Pha2S4iptIGlPE1soVGlxlmZFWyRRRFCwGI4EZJjA2QqFVGlZpYUAURjPLpY05Nzruk_uut_bu64Chybfu4Kv2ZM4BJCRKcdZS0FHt4yF4tHnty732vzmw_OgwPzrMjw7zk8M2c9dlSkT857M4SUSSxX-Ak21B</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Hu, Guo-Ping</creator><creator>Chan, Kwing Lam</creator><creator>Zheng, Yong-Chun</creator><creator>Xu, Ao-Ao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5743-5417</orcidid></search><sort><creationdate>20180901</creationdate><title>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</title><author>Hu, Guo-Ping ; Chan, Kwing Lam ; Zheng, Yong-Chun ; Xu, Ao-Ao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric particulates</topic><topic>Bright spots</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Chang’E (CE)</topic><topic>Computer simulation</topic><topic>Craters</topic><topic>Dust storms</topic><topic>Electromagnetic heating</topic><topic>Hot spots</topic><topic>Ilmenite</topic><topic>Iron</topic><topic>Latitude</topic><topic>microwave brightness temperature (TB)</topic><topic>Microwave measurement</topic><topic>Microwave radiometers</topic><topic>Mixed layer</topic><topic>Moon</topic><topic>Multilayers</topic><topic>Parameter uncertainty</topic><topic>radiation transfer model</topic><topic>Radiometers</topic><topic>Regolith</topic><topic>Rock</topic><topic>Rocks</topic><topic>Soil</topic><topic>Specific heat</topic><topic>Surface radiation temperature</topic><topic>Surface topography</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Titanium</topic><topic>Topographic effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guo-Ping</creatorcontrib><creatorcontrib>Chan, Kwing Lam</creatorcontrib><creatorcontrib>Zheng, Yong-Chun</creatorcontrib><creatorcontrib>Xu, Ao-Ao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guo-Ping</au><au>Chan, Kwing Lam</au><au>Zheng, Yong-Chun</au><au>Xu, Ao-Ao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>56</volume><issue>9</issue><spage>5471</spage><epage>5480</epage><pages>5471-5480</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Thermal anomaly spots (both hot and cold) have been found in the global 37-GHz brightness temperature (TB) map of the moon based on the Chang'E (CE) microwave radiometer measurements. To explain their origin, a rock model is proposed to simulate the TB variation against latitude along the profile of a fresh crater in a single track way, which is selected to highlight the topographic effect and avoid any modification to the data. A mixed upper layer made up of rock and soil (regolith and dust) was employed into our previous multilayer model. The thermal properties (thermal conductivity and heat capacity) of the mixture layer are presumed to be linear with the fraction of rocks. Given that high-frequency (37 GHz) measurements are chosen, only the meter size and larger rocks of the upper mixed layer are considered to avoid scattering effects. Several fresh craters poor/rich in ilmenite are selected as testing sites. Despite uncertainties in parameters such as rock abundance (RA), and iron and titanium abundances, three conclusions can be reached from these cases: 1) RA has a significant effect on both the TB value and TB variation trend against latitude; its contribution over some craters may be as high as 15 K; 2) the simulations based on our rock model fit the CE observations better than those when rocks are not included; and 3) the rock and ilmenite contributions could be the main cause for the cold and hot spots found in the CE microwave map.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2817654</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5743-5417</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-09, Vol.56 (9), p.5471-5480 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2018_2817654 |
source | IEEE Xplore (Online service) |
subjects | Atmospheric particulates Bright spots Brightness Brightness temperature Chang’E (CE) Computer simulation Craters Dust storms Electromagnetic heating Hot spots Ilmenite Iron Latitude microwave brightness temperature (TB) Microwave measurement Microwave radiometers Mixed layer Moon Multilayers Parameter uncertainty radiation transfer model Radiometers Regolith Rock Rocks Soil Specific heat Surface radiation temperature Surface topography Temperature Thermal conductivity Thermal properties Thermodynamic properties Titanium Topographic effects |
title | A Rock Model for the Cold and Hot Spots in the Chang'E Microwave Brightness Temperature Map |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rock%20Model%20for%20the%20Cold%20and%20Hot%20Spots%20in%20the%20Chang'E%20Microwave%20Brightness%20Temperature%20Map&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hu,%20Guo-Ping&rft.date=2018-09-01&rft.volume=56&rft.issue=9&rft.spage=5471&rft.epage=5480&rft.pages=5471-5480&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2817654&rft_dat=%3Cproquest_cross%3E2117149920%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-7ccd3ff7beceb88c7f976ee5d031c710c05e3c59ef9a1b6dc15dca0f27f322ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117149920&rft_id=info:pmid/&rft_ieee_id=8344548&rfr_iscdi=true |