Loading…
Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory
Images obtained from coherent illumination processes are contaminated with speckle. A prominent example of such imagery systems is the polarimetric synthetic aperture radar (PolSAR). For such a remote sensing tool, the speckle interference pattern appears in the form of a positive-definite Hermitian...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2019-03, Vol.57 (3), p.1380-1392 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93 |
container_end_page | 1392 |
container_issue | 3 |
container_start_page | 1380 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 57 |
creator | Nascimento, Abraao D. C. Frery, Alejandro C. Cintra, Renato J. |
description | Images obtained from coherent illumination processes are contaminated with speckle. A prominent example of such imagery systems is the polarimetric synthetic aperture radar (PolSAR). For such a remote sensing tool, the speckle interference pattern appears in the form of a positive-definite Hermitian matrix, which requires specialized models and makes change detection a hard task. The scaled complex Wishart distribution is a widely used model for PolSAR images. Such a distribution is defined by two parameters: the number of looks and the complex covariance matrix. The last parameter contains all the necessary information to characterize the backscattered data, and thus, identifying changes in a sequence of images can be formulated as a problem of verifying whether the complex covariance matrices differ at two or more takes. This paper proposes a comparison between a classical change detection method based on the likelihood ratio and three statistical methods that depend on information-theoretic measures: the Kullback-Leibler (KL) distance and two entropies. The performance of these four tests was quantified in terms of their sample test powers and sizes using simulated data. The tests are then applied to actual PolSAR data. The results provide evidence that tests based on entropies may outperform those based on the KL distance and likelihood ratio statistics. |
doi_str_mv | 10.1109/TGRS.2018.2866367 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2018_2866367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8464055</ieee_id><sourcerecordid>2187964843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpodb2B5ReAj2vTSYfmz2KrVYQWtTiMcSY1ci6a5N42H_fFaWnYeB532EehJ4pGVBKirflZL4YAKFqAEpKJvMb1KNCqIxIzm9Rj9BCZqAKuEcPMe4JoVzQvIdW7y45m3y9xaOdqbcuYl_j8amqWvzdVCb4g0vBW7wYzvH0YLYutHjl0w4vkkk-Jm9Nhad12YRDtzc1Xu5cE9pHdFeaKrqn6-yjn_HHcvSZzb4m09FwllkoWMqUJEoZzqWha1JYAkyWJZS5NMIKAMjBUuVgIxhQxthaKLcRAoQzAhwpC9ZHr5feY2h-Ty4mvW9Ooe5OaqAqLyRXnHUUvVA2NDEGV-pj95gJraZEn_3psz999qev_rrMyyXjnXP_vOKSEyHYH-DUaxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187964843</pqid></control><display><type>article</type><title>Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory</title><source>IEEE Xplore (Online service)</source><creator>Nascimento, Abraao D. C. ; Frery, Alejandro C. ; Cintra, Renato J.</creator><creatorcontrib>Nascimento, Abraao D. C. ; Frery, Alejandro C. ; Cintra, Renato J.</creatorcontrib><description>Images obtained from coherent illumination processes are contaminated with speckle. A prominent example of such imagery systems is the polarimetric synthetic aperture radar (PolSAR). For such a remote sensing tool, the speckle interference pattern appears in the form of a positive-definite Hermitian matrix, which requires specialized models and makes change detection a hard task. The scaled complex Wishart distribution is a widely used model for PolSAR images. Such a distribution is defined by two parameters: the number of looks and the complex covariance matrix. The last parameter contains all the necessary information to characterize the backscattered data, and thus, identifying changes in a sequence of images can be formulated as a problem of verifying whether the complex covariance matrices differ at two or more takes. This paper proposes a comparison between a classical change detection method based on the likelihood ratio and three statistical methods that depend on information-theoretic measures: the Kullback-Leibler (KL) distance and two entropies. The performance of these four tests was quantified in terms of their sample test powers and sizes using simulated data. The tests are then applied to actual PolSAR data. The results provide evidence that tests based on entropies may outperform those based on the KL distance and likelihood ratio statistics.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2866367</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Backscattering ; Change detection ; Computer simulation ; contrast ; Covariance matrices ; Covariance matrix ; Data ; Data models ; Detection ; Distance ; Distribution ; Entropy ; hypothesis test ; Imagery ; Information theory ; Likelihood ratio ; Mathematical models ; Matrix methods ; Maximum likelihood estimation ; Parameters ; Radar imaging ; Radar polarimetry ; Remote sensing ; SAR (radar) ; Speckle ; Statistical methods ; Statistics ; Synthetic aperture radar ; Tests ; Wishart</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-03, Vol.57 (3), p.1380-1392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93</citedby><cites>FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93</cites><orcidid>0000-0002-8002-5341 ; 0000-0003-2673-219X ; 0000-0002-4579-6757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8464055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nascimento, Abraao D. C.</creatorcontrib><creatorcontrib>Frery, Alejandro C.</creatorcontrib><creatorcontrib>Cintra, Renato J.</creatorcontrib><title>Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Images obtained from coherent illumination processes are contaminated with speckle. A prominent example of such imagery systems is the polarimetric synthetic aperture radar (PolSAR). For such a remote sensing tool, the speckle interference pattern appears in the form of a positive-definite Hermitian matrix, which requires specialized models and makes change detection a hard task. The scaled complex Wishart distribution is a widely used model for PolSAR images. Such a distribution is defined by two parameters: the number of looks and the complex covariance matrix. The last parameter contains all the necessary information to characterize the backscattered data, and thus, identifying changes in a sequence of images can be formulated as a problem of verifying whether the complex covariance matrices differ at two or more takes. This paper proposes a comparison between a classical change detection method based on the likelihood ratio and three statistical methods that depend on information-theoretic measures: the Kullback-Leibler (KL) distance and two entropies. The performance of these four tests was quantified in terms of their sample test powers and sizes using simulated data. The tests are then applied to actual PolSAR data. The results provide evidence that tests based on entropies may outperform those based on the KL distance and likelihood ratio statistics.</description><subject>Backscattering</subject><subject>Change detection</subject><subject>Computer simulation</subject><subject>contrast</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Data</subject><subject>Data models</subject><subject>Detection</subject><subject>Distance</subject><subject>Distribution</subject><subject>Entropy</subject><subject>hypothesis test</subject><subject>Imagery</subject><subject>Information theory</subject><subject>Likelihood ratio</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Maximum likelihood estimation</subject><subject>Parameters</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Speckle</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Synthetic aperture radar</subject><subject>Tests</subject><subject>Wishart</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rAjEQhkNpodb2B5ReAj2vTSYfmz2KrVYQWtTiMcSY1ci6a5N42H_fFaWnYeB532EehJ4pGVBKirflZL4YAKFqAEpKJvMb1KNCqIxIzm9Rj9BCZqAKuEcPMe4JoVzQvIdW7y45m3y9xaOdqbcuYl_j8amqWvzdVCb4g0vBW7wYzvH0YLYutHjl0w4vkkk-Jm9Nhad12YRDtzc1Xu5cE9pHdFeaKrqn6-yjn_HHcvSZzb4m09FwllkoWMqUJEoZzqWha1JYAkyWJZS5NMIKAMjBUuVgIxhQxthaKLcRAoQzAhwpC9ZHr5feY2h-Ty4mvW9Ooe5OaqAqLyRXnHUUvVA2NDEGV-pj95gJraZEn_3psz999qev_rrMyyXjnXP_vOKSEyHYH-DUaxU</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Nascimento, Abraao D. C.</creator><creator>Frery, Alejandro C.</creator><creator>Cintra, Renato J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8002-5341</orcidid><orcidid>https://orcid.org/0000-0003-2673-219X</orcidid><orcidid>https://orcid.org/0000-0002-4579-6757</orcidid></search><sort><creationdate>20190301</creationdate><title>Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory</title><author>Nascimento, Abraao D. C. ; Frery, Alejandro C. ; Cintra, Renato J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Backscattering</topic><topic>Change detection</topic><topic>Computer simulation</topic><topic>contrast</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Data</topic><topic>Data models</topic><topic>Detection</topic><topic>Distance</topic><topic>Distribution</topic><topic>Entropy</topic><topic>hypothesis test</topic><topic>Imagery</topic><topic>Information theory</topic><topic>Likelihood ratio</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Maximum likelihood estimation</topic><topic>Parameters</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Speckle</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Synthetic aperture radar</topic><topic>Tests</topic><topic>Wishart</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nascimento, Abraao D. C.</creatorcontrib><creatorcontrib>Frery, Alejandro C.</creatorcontrib><creatorcontrib>Cintra, Renato J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nascimento, Abraao D. C.</au><au>Frery, Alejandro C.</au><au>Cintra, Renato J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>57</volume><issue>3</issue><spage>1380</spage><epage>1392</epage><pages>1380-1392</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Images obtained from coherent illumination processes are contaminated with speckle. A prominent example of such imagery systems is the polarimetric synthetic aperture radar (PolSAR). For such a remote sensing tool, the speckle interference pattern appears in the form of a positive-definite Hermitian matrix, which requires specialized models and makes change detection a hard task. The scaled complex Wishart distribution is a widely used model for PolSAR images. Such a distribution is defined by two parameters: the number of looks and the complex covariance matrix. The last parameter contains all the necessary information to characterize the backscattered data, and thus, identifying changes in a sequence of images can be formulated as a problem of verifying whether the complex covariance matrices differ at two or more takes. This paper proposes a comparison between a classical change detection method based on the likelihood ratio and three statistical methods that depend on information-theoretic measures: the Kullback-Leibler (KL) distance and two entropies. The performance of these four tests was quantified in terms of their sample test powers and sizes using simulated data. The tests are then applied to actual PolSAR data. The results provide evidence that tests based on entropies may outperform those based on the KL distance and likelihood ratio statistics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2866367</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8002-5341</orcidid><orcidid>https://orcid.org/0000-0003-2673-219X</orcidid><orcidid>https://orcid.org/0000-0002-4579-6757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2019-03, Vol.57 (3), p.1380-1392 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2018_2866367 |
source | IEEE Xplore (Online service) |
subjects | Backscattering Change detection Computer simulation contrast Covariance matrices Covariance matrix Data Data models Detection Distance Distribution Entropy hypothesis test Imagery Information theory Likelihood ratio Mathematical models Matrix methods Maximum likelihood estimation Parameters Radar imaging Radar polarimetry Remote sensing SAR (radar) Speckle Statistical methods Statistics Synthetic aperture radar Tests Wishart |
title | Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Changes%20in%20Fully%20Polarimetric%20SAR%20Imagery%20With%20Statistical%20Information%20Theory&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Nascimento,%20Abraao%20D.%20C.&rft.date=2019-03-01&rft.volume=57&rft.issue=3&rft.spage=1380&rft.epage=1392&rft.pages=1380-1392&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2866367&rft_dat=%3Cproquest_cross%3E2187964843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-86088a446a1b09c0236ff2f76a5c522272c18e2d5321333b58ed5525ea52e0f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187964843&rft_id=info:pmid/&rft_ieee_id=8464055&rfr_iscdi=true |