Loading…
Application of Neural Network to GNSS-R Wind Speed Retrieval
This paper applies a machine learning (ML) algorithm based on the multi-hidden layer neural network (MHL-NN) for ocean surface wind speed estimation using global navigation satellite system (GNSS) reflection measurements. Unlike conventional wind speed retrieval methods that often depend on limited...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2019-12, Vol.57 (12), p.9756-9766 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper applies a machine learning (ML) algorithm based on the multi-hidden layer neural network (MHL-NN) for ocean surface wind speed estimation using global navigation satellite system (GNSS) reflection measurements. Unlike conventional wind speed retrieval methods that often depend on limited scalar delay-Doppler map (DDM) observables, the proposed MHL-NN makes use of information captured by the entire DDM. Both simulated and real data sets are used to train and evaluate the performance of the MHL-NN and compare it to a conventional wind speed retrieval method and other prevailing ML algorithms. The results show that the MHL-NN algorithm outperforms the other methods in terms of the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the wind speed estimation. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2019.2929002 |