Loading…
Integrated Water Vapor Estimation Through Microwave Propagation Measurements: First Experiment on a Ground-to-Ground Radio Link
Measurement of water vapor (WV) in the lower troposphere on a continuous temporal basis would improve our knowledge of the atmospheric dynamics and the performance of numerical weather prediction models. In recent studies, a new measurement concept, the normalized differential spectral attenuation (...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measurement of water vapor (WV) in the lower troposphere on a continuous temporal basis would improve our knowledge of the atmospheric dynamics and the performance of numerical weather prediction models. In recent studies, a new measurement concept, the normalized differential spectral attenuation (NDSA) approach, was proposed. It is based on measurements of differential attenuation at 18.8 and 19.2 GHz performed along a tropospheric radio link. While NDSA measurement at a fixed elevation angle provides information on integrated WV (IWV), measurements at different elevation angles allow to retrieve the vertical WV content profile. A prototype NDSA demonstrator, which consists of two units, a synthesized transmitter and a software-defined radio receiver, has been designed and implemented. The system was accurately characterized through several laboratory tests, and then a first experimental campaign was conducted at fixed elevation angle along a ground-to-ground radio link. Obtained results confirm the sensitivity of the NDSA measurements to the IWV along such link with a good agreement with the existing ground-based and satellite data products. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2021.3067929 |