Loading…
Spatiotemporal Reflectance Fusion via Tensor Sparse Representation
Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high sp...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-18 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3 |
container_end_page | 18 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Peng, Yidong Li, Weisheng Luo, Xiaobo Du, Jiao Zhang, Xiayan Gan, Yi Gao, Xinbo |
description | Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model. |
doi_str_mv | 10.1109/TGRS.2021.3091157 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3091157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9471790</ieee_id><sourcerecordid>2619589222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2a9kj1psKxSEtp6XzWYWUtps3E0F_70JLZ7m8t4M8wh5BDoDoPplt9xsZ4wymHGqAWRxRSYgZZlTJcQ1mVDQKmelZrfkLqU9pSAkFBPytu1s34Qej12I9pBt0B_Q9bZ1mC1OqQlt9tPYbIdtCjEb4JhwgLqICdt-VNt7cuPtIeHDZU7J1-J9N1_l68_lx_x1nTumeZ_r2lau9ozVvtClQBCgfe2s5YUTzEENZVVooWpUXrKqYl4xrrzyaCmV3PIpeT7v7WL4PmHqzT6cYjucNEyBlsNzjA0UnCkXQ0oRvelic7Tx1wA1YyozpjJjKnNJNThPZ6dBxH9eiwIKTfkfxxxl8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589222</pqid></control><display><type>article</type><title>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Peng, Yidong ; Li, Weisheng ; Luo, Xiaobo ; Du, Jiao ; Zhang, Xiayan ; Gan, Yi ; Gao, Xinbo</creator><creatorcontrib>Peng, Yidong ; Li, Weisheng ; Luo, Xiaobo ; Du, Jiao ; Zhang, Xiayan ; Gan, Yi ; Gao, Xinbo</creatorcontrib><description>Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3091157</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Catchment area ; Coefficients ; Computer vision ; Correlation ; Cubes ; Degradation ; Dictionaries ; Dictionary learning ; Earth surface ; Exploitation ; Feasibility studies ; Glossaries ; Image processing ; Instruments ; Learning ; Learning systems ; Mapping ; Methods ; Neglect syndromes ; nonlocal tensor sparse representation (TSR) ; Reflectance ; Remote sensing ; Representations ; Resolution ; Satellite instruments ; Satellite-borne instruments ; Sensors ; Similarity ; Spatial data ; Spatial discrimination ; Spatial resolution ; spatial-spectral-nonlocal correlation ; spatiotemporal fusion ; Spatiotemporal phenomena ; Spectra ; Spectral correlation ; Surface dynamics ; Tensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</citedby><cites>FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</cites><orcidid>0000-0003-3779-0360 ; 0000-0002-9033-8245 ; 0000-0003-1443-0776 ; 0000-0001-5688-0324 ; 0000-0001-6402-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9471790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Peng, Yidong</creatorcontrib><creatorcontrib>Li, Weisheng</creatorcontrib><creatorcontrib>Luo, Xiaobo</creatorcontrib><creatorcontrib>Du, Jiao</creatorcontrib><creatorcontrib>Zhang, Xiayan</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.</description><subject>Catchment area</subject><subject>Coefficients</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>Cubes</subject><subject>Degradation</subject><subject>Dictionaries</subject><subject>Dictionary learning</subject><subject>Earth surface</subject><subject>Exploitation</subject><subject>Feasibility studies</subject><subject>Glossaries</subject><subject>Image processing</subject><subject>Instruments</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neglect syndromes</subject><subject>nonlocal tensor sparse representation (TSR)</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Resolution</subject><subject>Satellite instruments</subject><subject>Satellite-borne instruments</subject><subject>Sensors</subject><subject>Similarity</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>spatial-spectral-nonlocal correlation</subject><subject>spatiotemporal fusion</subject><subject>Spatiotemporal phenomena</subject><subject>Spectra</subject><subject>Spectral correlation</subject><subject>Surface dynamics</subject><subject>Tensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2a9kj1psKxSEtp6XzWYWUtps3E0F_70JLZ7m8t4M8wh5BDoDoPplt9xsZ4wymHGqAWRxRSYgZZlTJcQ1mVDQKmelZrfkLqU9pSAkFBPytu1s34Qej12I9pBt0B_Q9bZ1mC1OqQlt9tPYbIdtCjEb4JhwgLqICdt-VNt7cuPtIeHDZU7J1-J9N1_l68_lx_x1nTumeZ_r2lau9ozVvtClQBCgfe2s5YUTzEENZVVooWpUXrKqYl4xrrzyaCmV3PIpeT7v7WL4PmHqzT6cYjucNEyBlsNzjA0UnCkXQ0oRvelic7Tx1wA1YyozpjJjKnNJNThPZ6dBxH9eiwIKTfkfxxxl8A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Peng, Yidong</creator><creator>Li, Weisheng</creator><creator>Luo, Xiaobo</creator><creator>Du, Jiao</creator><creator>Zhang, Xiayan</creator><creator>Gan, Yi</creator><creator>Gao, Xinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3779-0360</orcidid><orcidid>https://orcid.org/0000-0002-9033-8245</orcidid><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid><orcidid>https://orcid.org/0000-0001-5688-0324</orcidid><orcidid>https://orcid.org/0000-0001-6402-1335</orcidid></search><sort><creationdate>2022</creationdate><title>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</title><author>Peng, Yidong ; Li, Weisheng ; Luo, Xiaobo ; Du, Jiao ; Zhang, Xiayan ; Gan, Yi ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catchment area</topic><topic>Coefficients</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>Cubes</topic><topic>Degradation</topic><topic>Dictionaries</topic><topic>Dictionary learning</topic><topic>Earth surface</topic><topic>Exploitation</topic><topic>Feasibility studies</topic><topic>Glossaries</topic><topic>Image processing</topic><topic>Instruments</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neglect syndromes</topic><topic>nonlocal tensor sparse representation (TSR)</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Resolution</topic><topic>Satellite instruments</topic><topic>Satellite-borne instruments</topic><topic>Sensors</topic><topic>Similarity</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>spatial-spectral-nonlocal correlation</topic><topic>spatiotemporal fusion</topic><topic>Spatiotemporal phenomena</topic><topic>Spectra</topic><topic>Spectral correlation</topic><topic>Surface dynamics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yidong</creatorcontrib><creatorcontrib>Li, Weisheng</creatorcontrib><creatorcontrib>Luo, Xiaobo</creatorcontrib><creatorcontrib>Du, Jiao</creatorcontrib><creatorcontrib>Zhang, Xiayan</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yidong</au><au>Li, Weisheng</au><au>Luo, Xiaobo</au><au>Du, Jiao</au><au>Zhang, Xiayan</au><au>Gan, Yi</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3091157</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3779-0360</orcidid><orcidid>https://orcid.org/0000-0002-9033-8245</orcidid><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid><orcidid>https://orcid.org/0000-0001-5688-0324</orcidid><orcidid>https://orcid.org/0000-0001-6402-1335</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-18 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3091157 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Catchment area Coefficients Computer vision Correlation Cubes Degradation Dictionaries Dictionary learning Earth surface Exploitation Feasibility studies Glossaries Image processing Instruments Learning Learning systems Mapping Methods Neglect syndromes nonlocal tensor sparse representation (TSR) Reflectance Remote sensing Representations Resolution Satellite instruments Satellite-borne instruments Sensors Similarity Spatial data Spatial discrimination Spatial resolution spatial-spectral-nonlocal correlation spatiotemporal fusion Spatiotemporal phenomena Spectra Spectral correlation Surface dynamics Tensors |
title | Spatiotemporal Reflectance Fusion via Tensor Sparse Representation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Reflectance%20Fusion%20via%20Tensor%20Sparse%20Representation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Peng,%20Yidong&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3091157&rft_dat=%3Cproquest_cross%3E2619589222%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619589222&rft_id=info:pmid/&rft_ieee_id=9471790&rfr_iscdi=true |