Loading…

Spatiotemporal Reflectance Fusion via Tensor Sparse Representation

Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high sp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-18
Main Authors: Peng, Yidong, Li, Weisheng, Luo, Xiaobo, Du, Jiao, Zhang, Xiayan, Gan, Yi, Gao, Xinbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3
cites cdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3
container_end_page 18
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Peng, Yidong
Li, Weisheng
Luo, Xiaobo
Du, Jiao
Zhang, Xiayan
Gan, Yi
Gao, Xinbo
description Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.
doi_str_mv 10.1109/TGRS.2021.3091157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3091157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9471790</ieee_id><sourcerecordid>2619589222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2a9kj1psKxSEtp6XzWYWUtps3E0F_70JLZ7m8t4M8wh5BDoDoPplt9xsZ4wymHGqAWRxRSYgZZlTJcQ1mVDQKmelZrfkLqU9pSAkFBPytu1s34Qej12I9pBt0B_Q9bZ1mC1OqQlt9tPYbIdtCjEb4JhwgLqICdt-VNt7cuPtIeHDZU7J1-J9N1_l68_lx_x1nTumeZ_r2lau9ozVvtClQBCgfe2s5YUTzEENZVVooWpUXrKqYl4xrrzyaCmV3PIpeT7v7WL4PmHqzT6cYjucNEyBlsNzjA0UnCkXQ0oRvelic7Tx1wA1YyozpjJjKnNJNThPZ6dBxH9eiwIKTfkfxxxl8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589222</pqid></control><display><type>article</type><title>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Peng, Yidong ; Li, Weisheng ; Luo, Xiaobo ; Du, Jiao ; Zhang, Xiayan ; Gan, Yi ; Gao, Xinbo</creator><creatorcontrib>Peng, Yidong ; Li, Weisheng ; Luo, Xiaobo ; Du, Jiao ; Zhang, Xiayan ; Gan, Yi ; Gao, Xinbo</creatorcontrib><description>Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3091157</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Catchment area ; Coefficients ; Computer vision ; Correlation ; Cubes ; Degradation ; Dictionaries ; Dictionary learning ; Earth surface ; Exploitation ; Feasibility studies ; Glossaries ; Image processing ; Instruments ; Learning ; Learning systems ; Mapping ; Methods ; Neglect syndromes ; nonlocal tensor sparse representation (TSR) ; Reflectance ; Remote sensing ; Representations ; Resolution ; Satellite instruments ; Satellite-borne instruments ; Sensors ; Similarity ; Spatial data ; Spatial discrimination ; Spatial resolution ; spatial-spectral-nonlocal correlation ; spatiotemporal fusion ; Spatiotemporal phenomena ; Spectra ; Spectral correlation ; Surface dynamics ; Tensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</citedby><cites>FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</cites><orcidid>0000-0003-3779-0360 ; 0000-0002-9033-8245 ; 0000-0003-1443-0776 ; 0000-0001-5688-0324 ; 0000-0001-6402-1335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9471790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Peng, Yidong</creatorcontrib><creatorcontrib>Li, Weisheng</creatorcontrib><creatorcontrib>Luo, Xiaobo</creatorcontrib><creatorcontrib>Du, Jiao</creatorcontrib><creatorcontrib>Zhang, Xiayan</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><title>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.</description><subject>Catchment area</subject><subject>Coefficients</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>Cubes</subject><subject>Degradation</subject><subject>Dictionaries</subject><subject>Dictionary learning</subject><subject>Earth surface</subject><subject>Exploitation</subject><subject>Feasibility studies</subject><subject>Glossaries</subject><subject>Image processing</subject><subject>Instruments</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neglect syndromes</subject><subject>nonlocal tensor sparse representation (TSR)</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Resolution</subject><subject>Satellite instruments</subject><subject>Satellite-borne instruments</subject><subject>Sensors</subject><subject>Similarity</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>spatial-spectral-nonlocal correlation</subject><subject>spatiotemporal fusion</subject><subject>Spatiotemporal phenomena</subject><subject>Spectra</subject><subject>Spectral correlation</subject><subject>Surface dynamics</subject><subject>Tensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2a9kj1psKxSEtp6XzWYWUtps3E0F_70JLZ7m8t4M8wh5BDoDoPplt9xsZ4wymHGqAWRxRSYgZZlTJcQ1mVDQKmelZrfkLqU9pSAkFBPytu1s34Qej12I9pBt0B_Q9bZ1mC1OqQlt9tPYbIdtCjEb4JhwgLqICdt-VNt7cuPtIeHDZU7J1-J9N1_l68_lx_x1nTumeZ_r2lau9ozVvtClQBCgfe2s5YUTzEENZVVooWpUXrKqYl4xrrzyaCmV3PIpeT7v7WL4PmHqzT6cYjucNEyBlsNzjA0UnCkXQ0oRvelic7Tx1wA1YyozpjJjKnNJNThPZ6dBxH9eiwIKTfkfxxxl8A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Peng, Yidong</creator><creator>Li, Weisheng</creator><creator>Luo, Xiaobo</creator><creator>Du, Jiao</creator><creator>Zhang, Xiayan</creator><creator>Gan, Yi</creator><creator>Gao, Xinbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3779-0360</orcidid><orcidid>https://orcid.org/0000-0002-9033-8245</orcidid><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid><orcidid>https://orcid.org/0000-0001-5688-0324</orcidid><orcidid>https://orcid.org/0000-0001-6402-1335</orcidid></search><sort><creationdate>2022</creationdate><title>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</title><author>Peng, Yidong ; Li, Weisheng ; Luo, Xiaobo ; Du, Jiao ; Zhang, Xiayan ; Gan, Yi ; Gao, Xinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catchment area</topic><topic>Coefficients</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>Cubes</topic><topic>Degradation</topic><topic>Dictionaries</topic><topic>Dictionary learning</topic><topic>Earth surface</topic><topic>Exploitation</topic><topic>Feasibility studies</topic><topic>Glossaries</topic><topic>Image processing</topic><topic>Instruments</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neglect syndromes</topic><topic>nonlocal tensor sparse representation (TSR)</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Resolution</topic><topic>Satellite instruments</topic><topic>Satellite-borne instruments</topic><topic>Sensors</topic><topic>Similarity</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>spatial-spectral-nonlocal correlation</topic><topic>spatiotemporal fusion</topic><topic>Spatiotemporal phenomena</topic><topic>Spectra</topic><topic>Spectral correlation</topic><topic>Surface dynamics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yidong</creatorcontrib><creatorcontrib>Li, Weisheng</creatorcontrib><creatorcontrib>Luo, Xiaobo</creatorcontrib><creatorcontrib>Du, Jiao</creatorcontrib><creatorcontrib>Zhang, Xiayan</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Gao, Xinbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Yidong</au><au>Li, Weisheng</au><au>Luo, Xiaobo</au><au>Du, Jiao</au><au>Zhang, Xiayan</au><au>Gan, Yi</au><au>Gao, Xinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal Reflectance Fusion via Tensor Sparse Representation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Tradeoffs between the spatial and temporal resolutions of current satellite instruments limit our ability to conduct high-quality and continuous monitoring of the earth's surface dynamics. Spatiotemporal image fusion has become increasingly necessary to obtain remote sensing images with high spatiotemporal resolution. However, current learning-based methods concentrate on predicting images only from spatial similarity and neglect spectral correlations of remote sensing images, leading to significant spectral information loss. In this article, we develop a novel nonlocal tensor sparse representation-based semicoupled dictionary learning approach (SCDNTSR) for spatiotemporal fusion. In the SCDNTSR method, the spectral correlation and the spatial similarity of the nonlocal similar cubes are simultaneously exploited through the tensor-tensor product-based tensor sparse representation. Furthermore, the semicoupled mapping prior knowledge of sparse coefficients across the high- and low-spatial resolution (HSR\LSR) image spaces is exploited with the coupled dictionary to constrain the similarity of sparse coefficients to improve the prediction performance. In addition, to capture additional prior spatial information, the SCDNTSR provides a new method to determine the degradation relationship between the target HSR and LSR difference images with the help of the known HSR and LSR difference images. The proposed SCDNTSR method was tested on real datasets at both the Coleambally Irrigation Area study site and the Lower Gwydir Catchment study site. Results show that the proposed method outperforms five state-of-the-art methods, especially in maintaining the spectral information, proving the feasibility of integrating the degradation relationship, spatio-spectral-nonlocal correlation, and semicoupled mapping priors of the multisource data into the proposed model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3091157</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3779-0360</orcidid><orcidid>https://orcid.org/0000-0002-9033-8245</orcidid><orcidid>https://orcid.org/0000-0003-1443-0776</orcidid><orcidid>https://orcid.org/0000-0001-5688-0324</orcidid><orcidid>https://orcid.org/0000-0001-6402-1335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-18
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3091157
source IEEE Electronic Library (IEL) Journals
subjects Catchment area
Coefficients
Computer vision
Correlation
Cubes
Degradation
Dictionaries
Dictionary learning
Earth surface
Exploitation
Feasibility studies
Glossaries
Image processing
Instruments
Learning
Learning systems
Mapping
Methods
Neglect syndromes
nonlocal tensor sparse representation (TSR)
Reflectance
Remote sensing
Representations
Resolution
Satellite instruments
Satellite-borne instruments
Sensors
Similarity
Spatial data
Spatial discrimination
Spatial resolution
spatial-spectral-nonlocal correlation
spatiotemporal fusion
Spatiotemporal phenomena
Spectra
Spectral correlation
Surface dynamics
Tensors
title Spatiotemporal Reflectance Fusion via Tensor Sparse Representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20Reflectance%20Fusion%20via%20Tensor%20Sparse%20Representation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Peng,%20Yidong&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3091157&rft_dat=%3Cproquest_cross%3E2619589222%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9dabcdf22df7984e1419fdcaa37c42c1d18b7946de6f52bb2f6236f6fea0053a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619589222&rft_id=info:pmid/&rft_ieee_id=9471790&rfr_iscdi=true